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Trellys

A collaborative project to design a new
dependently typed programming language

 Emphasis on:

» Writing practical programs
» Exploring new points in the design space

« Today: 30 minute presentation, then 30 minutes
of discussion




* The Trellys core language is dependently
typed.

* |t is presented with a collapsed syntax (as in
the lambda cube).

* The operational semantics is call by value.




Problem 1: Non-logical programs

» Many desired PL features aren't naturally
logical.

« General recursion, Type : Type, non-positive
datatypes, nondeterminism, IO

* Technigues exist to cope with some of them.
« Coinduction is popular now in Cog/Agda

» We wanted to try something different and more
direct.




The Trellys Approach

» The core language is divided into Logical and
Programmatic fragments by the typing
judgement.

0:=L|P
 We call 6 the “consistency classifier”.

I'Fg A: B




The Two Fragments

* “L” looks like CIC with a universe hierarchy.

« “P” collapses the universes with Type:Type,
adds general recursion, more datatypes, etc.

 Theorem:
'L A:B=T1FpA:B

« S0 proofs are programs (but not all programs are
proofs).




Freedom of Speech

« Terms in the logical fragment can contain
programmatic subterms.

* This is important to write proofs about
programs.

* e.0., “‘w = 3" Is areasonable logical assertion

* The type system rules out such terms when
they would diverge.




Problem 2: Efficiency and Proofs

« Computing with proofs is sometimes expensive
and unnecessary.

» Coq has the Prop/Set distinction and program
extraction.

« But this forces some duplication and makes run-
time relevance a property of terms themselves.

 In Trellys, we build on the ICC*/EPTS approach.




The Trellys Approach

 Whether a term is erased depends on how it is
used.

* A\ (z:A).b  argument needed at run-time.

* \_(x:A).b argumentis compile-time only.
* The type system checks that compile-time
arguments are used only in erased positions.
A_(x: A).b| = b
Ar(x: A).b| = Ax.|b|

e Erasure:
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Trellys vs ICC*

« This erasure is similar to ICC* (Barras and
Bernardo, 2008) and EPTS (Linger, 2008).

« But we erase more type annotations.

» A similar idea also recently appeared in Agda.

e It has surprising interactions with the rest of
Trellys (more on this in a bit).
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Problem 3: Types and Equality

* In existing type theories, types gum up equality.

« For example, to prove
H : x =nat Nil x = Nil nat

we must reason with the assumption.

* And to prove vector append associates, we
have to reason about addition.

« We want something more computational.
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The Trellys Approach

* In Trellys, “a = b” is a primitive type.

 We can prove a =b when |a| ~" ¢ and
b] ~7 c.

* Here, |a| is erasure and ~* is CBV reduction.

« Conversions require logical proofs and are
erased.

e i.e., |convabybatzx.A|l=|a
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Non-termination vs. equality

e Since we have non-termination, a “normalize-
and-compare” strategy won't work.

 Trellys equality proofs specify how many steps
of reduction are needed.

« Hopefully elaboration from a source language
could infer these.
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How about proof irrelevance?

 In Trellys, not all proofs of a proposition are
equal.

« But before comparing terms, we erase
irrelevant arguments.

* Proofs in irrelevant positions don't get “in the
way” of equality.
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How about extensionality?

* Nope... actually it's inconsistent!

» With extensionality:
AMx:0=1).0=Ax:0=1).1

 We erase all type annotations, so:
AMx:nat).0 =A(x:0=1).0

e Thus:
A(x : nat).0 = A(x : nat).1
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Trellys vs. Coag/Agda vs. OTT

« Both Trellys and OTT attempt to extend the
equality of traditional type theories.

» But they do so differently.
 Trellys has a computational focus, while OTT
supports type-directed principles like extensionality.

* The extensionality example suggests the two
approaches may be incompatible.
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Problem 4: Metatheory

« That last example was weird... is all hope lost?

« We'd like to prove the standard properties.

« Type safety
« Normalization, for the logical fragment

* Preservation, at least, should be easy.
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* Progress is a little trickier:

Theorem:If T'g A: B then |A| ~ |A')
or |A| is a value.

* As usual, this depends on normalization for
canonical forms.

e Suppose we have it, for now.
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A problem for progress

e Consider some function
A_(z:-0=1).b

* The contradictory assumption might be used as
a coercion inside the body.

* e.g., to index into an empty vector

e If the l[ambda is erased, this creates a stuck
term.
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A value restriction

« Solution: implicit lambda bodies must be values.

A_(x: A

 Now we know it doesn't get stuck.
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Another value restriction

* Applications to non-logical terms are also
restricted:

a v

e Two reasons

o |f it's a compile-time function, erasing a loop would
be odd.

e |fit's a run-time function that produces logical
results, a loop could break normalization.

 Logical non-values are allowed.
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Is It Inconvenient?

e Variables are values.

e So sequencing terms explicitly with “let”
expressions helps.

« Some of this could be done automatically in the
source language.
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* The programmatic fragment doesn't normalize.

* Nor do open terms in the logical fragment:

e An assumption of nat = nat — nat can be used to
typecheck the Y combinator.

« And the “proof” gets erased before evaluation.

« But closed logical terms should.

» We've proved this for a smaller language with
freedom of speech.
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- summay

 Trellys supports non-logical features with a
programmatic fragment.

 Trellys has ICC*-style erasure.
 Trellys equality has a computational flavor.

 Trellys exploits CBV reduction and value
restrictions for type safety and soundness.
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Some lingering questions

* |s there a consistent equality with this
computational flavor that is compatible with
extensionality?

« Can we eliminate any of the value restrictions?

« Will the L/C annotations cause significant
duplication?

« And how should datatypes be classified?
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