The Preliminary Design of the
Trellys Core Language

PLPV 2011

Austin, TX

The Trellys Team

T) L
. nn THE UNIVERSITY Portland S
& Pef lﬁﬁ OF lowA PrTANGRER
Stephanie Weirich Aaron Stump Tim Sheard
Chris Casinghino Harley Eades Ki Yung Ahn
Vilhelm Sjoberg Peng (Frank) Fu Nathan Collins

Garrin Kimmell

Trellys

A collaborative project to design a new
dependently typed programming language

 Emphasis on:

» Writing practical programs
» Exploring new points in the design space

« Today: 30 minute presentation, then 30 minutes
of discussion

* The Trellys core language is dependently
typed.

* |t is presented with a collapsed syntax (as in
the lambda cube).

* The operational semantics is call by value.

Problem 1: Non-logical programs

» Many desired PL features aren't naturally
logical.

« General recursion, Type : Type, non-positive
datatypes, nondeterminism, IO

* Technigues exist to cope with some of them.
« Coinduction is popular now in Cog/Agda

» We wanted to try something different and more
direct.

The Trellys Approach

» The core language is divided into Logical and
Programmatic fragments by the typing
judgement.

0:=L|P
 We call 6 the “consistency classifier”.

I'Fg A: B

The Two Fragments

* “L” looks like CIC with a universe hierarchy.

« “P” collapses the universes with Type:Type,
adds general recursion, more datatypes, etc.

 Theorem:
'L A:B=T1FpA:B

« S0 proofs are programs (but not all programs are
proofs).

Freedom of Speech

« Terms in the logical fragment can contain
programmatic subterms.

* This is important to write proofs about
programs.

* e.0., “‘w = 3" Is areasonable logical assertion

* The type system rules out such terms when
they would diverge.

Problem 2: Efficiency and Proofs

« Computing with proofs is sometimes expensive
and unnecessary.

» Coq has the Prop/Set distinction and program
extraction.

« But this forces some duplication and makes run-
time relevance a property of terms themselves.

 In Trellys, we build on the ICC*/EPTS approach.

The Trellys Approach

 Whether a term is erased depends on how it is
used.

* A\ (z:A).b argument needed at run-time.

* _(x:A).b argumentis compile-time only.
* The type system checks that compile-time
arguments are used only in erased positions.
A_(x: A).b| = b
Ar(x: A).b| = Ax.|b|

e Erasure:

10

Trellys vs ICC*

« This erasure is similar to ICC* (Barras and
Bernardo, 2008) and EPTS (Linger, 2008).

« But we erase more type annotations.

» A similar idea also recently appeared in Agda.

e It has surprising interactions with the rest of
Trellys (more on this in a bit).

11

Problem 3: Types and Equality

* In existing type theories, types gum up equality.

« For example, to prove
H : x =nat Nil x = Nil nat

we must reason with the assumption.

* And to prove vector append associates, we
have to reason about addition.

« We want something more computational.

12

The Trellys Approach

* In Trellys, “a = b” is a primitive type.

 We can prove a =b when |a| ~" ¢ and
b] ~7 c.

* Here, |a| is erasure and ~* is CBV reduction.

« Conversions require logical proofs and are
erased.

e i.e., |convabybatzx.A|l=|a

13

Non-termination vs. equality

e Since we have non-termination, a “normalize-
and-compare” strategy won't work.

 Trellys equality proofs specify how many steps
of reduction are needed.

« Hopefully elaboration from a source language
could infer these.

14

How about proof irrelevance?

 In Trellys, not all proofs of a proposition are
equal.

« But before comparing terms, we erase
irrelevant arguments.

* Proofs in irrelevant positions don't get “in the
way” of equality.

15

How about extensionality?

* Nope... actually it's inconsistent!

» With extensionality:
AMx:0=1).0=Ax:0=1).1

 We erase all type annotations, so:
AMx:nat).0 =A(x:0=1).0

e Thus:
A(x : nat).0 = A(x : nat).1

16

Trellys vs. Coag/Agda vs. OTT

« Both Trellys and OTT attempt to extend the
equality of traditional type theories.

» But they do so differently.
 Trellys has a computational focus, while OTT
supports type-directed principles like extensionality.

* The extensionality example suggests the two
approaches may be incompatible.

17

Problem 4: Metatheory

« That last example was weird... is all hope lost?

« We'd like to prove the standard properties.

« Type safety
« Normalization, for the logical fragment

* Preservation, at least, should be easy.

18

* Progress is a little trickier:

Theorem:If T'g A: B then |A| ~ |A')
or |A| is a value.

* As usual, this depends on normalization for
canonical forms.

e Suppose we have it, for now.

19

A problem for progress

e Consider some function
A_(z:-0=1).b

* The contradictory assumption might be used as
a coercion inside the body.

* e.g., to index into an empty vector

e If the l[ambda is erased, this creates a stuck
term.

20

A value restriction

« Solution: implicit lambda bodies must be values.

A_(x: A

 Now we know it doesn't get stuck.

21

Another value restriction

* Applications to non-logical terms are also
restricted:

a v

e Two reasons

o |f it's a compile-time function, erasing a loop would
be odd.

e |fit's a run-time function that produces logical
results, a loop could break normalization.

 Logical non-values are allowed.

22

Is It Inconvenient?

e Variables are values.

e So sequencing terms explicitly with “let”
expressions helps.

« Some of this could be done automatically in the
source language.

23

* The programmatic fragment doesn't normalize.

* Nor do open terms in the logical fragment:

e An assumption of nat = nat — nat can be used to
typecheck the Y combinator.

« And the “proof” gets erased before evaluation.

« But closed logical terms should.

» We've proved this for a smaller language with
freedom of speech.

24

- summay

 Trellys supports non-logical features with a
programmatic fragment.

 Trellys has ICC*-style erasure.
 Trellys equality has a computational flavor.

 Trellys exploits CBV reduction and value
restrictions for type safety and soundness.

25

Some lingering questions

* |s there a consistent equality with this
computational flavor that is compatible with
extensionality?

« Can we eliminate any of the value restrictions?

« Will the L/C annotations cause significant
duplication?

« And how should datatypes be classified?

26

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

