
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Labeled Tuples
(Informed position)

Chris Casinghino
Jane Street

USA
ccasinghino@janestreet.com

Ryan Tjoa
University of Washington

USA
rtjoa@cs.washington.edu

Abstract
This talk will introduce the labeled tuples language feature,
which allows programmers to label tuple elements. It is con-
ceptually dual to labeled function arguments, allowing pro-
grammers to give a helpful name to constructed values where
labeled function arguments permit giving a helpful name to
parameters. We present an overview of the design of this fea-
ture, arguments for and against its inclusion in the language,
and describe a few possible variations and implementation
considerations. We have implemented labeled tuples in Jane
Street’s branch of the OCaml compiler—it has proven ex-
tremely popular and quickly found wide use in our code
base.

ACM Reference Format:
Chris Casinghino and Ryan Tjoa. 2024. Labeled Tuples: (Informed
position). In Proceedings of Higher-order, Typed, Inferred, Strict: ML
Family Workshop 2024 (ML ’24). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Language feature overview
The labeled tuples extension allows the programmer to label
tuple elements. It is conceptually dual to labeled function ar-
guments [2], allowing programmers to give helpful names to
constructed values where labeled function arguments permit
giving a helpful name to parameters. We have implemented
this feature within Jane Street’s branch of the OCaml com-
piler [1].

Here is a motivating example where we want to compute
two values from a list and be careful not to mix them up:

let sum_and_product ints =
let init = ~sum:0, ~product:1 in
List.fold_left ints ~init

~f:(fun (~sum, ~product) elem ->
let sum = elem + sum in
let product = elem * product in
~sum, ~product)

This example shows the use of labeled tuples in expres-
sions and patterns. They may be punned like record elements
and labeled function arguments. In types, tuple labels are

ML ’24, September, 2024, Milan, Italy
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

written similarly to function argument labels. For example,
the function f in the previous example has the type:

(sum:int * product:int) -> int
-> sum:int * product:int

Because sum:int * product:int is a different type than
product:int * sum:int, the use of a labeled tuple in this
example prevents us from accidentally returning the pair in
the wrong order. Labeled tuple types are structural and do
not need to be declared before use.

Labeled tuples are useful anytime one wants to use names
to explain or disambiguate the elements of a tuple, but declar-
ing a new record feels too heavy. As another example, con-
sider this function from the Core_unix library which creates
a pipe with descriptors for reading and writing:

val pipe :
?close_on_exec:bool -> unit

-> File_descr.t * File_descr.t

Which is which? With labeled tuples, we can make it clear
just as cheaply as using a labeled function argument:

val pipe :
?close_on_exec:bool -> unit

-> read:File_descr.t * write:File_descr.t

Tuples may be partially labeled, which can be useful when
some elements of the tuple share a type and need disam-
biguation, but others don’t. For example:

type min_max_avg = min:int * max:int * float

1.1 Reordering and partial patterns
Like records, labeled tuple patterns may be reordered or par-
tial. The compiler only supports reordering / partial matching
when it knows the type of the pattern from its context.

So, for example, we can write:

let lt = ~x:0, ~y:42;;
val lt : x:int * y:int = (~x:0, ~y:42)

let twice_y = let ~y, .. = lt in y * 2;;
val twice_y : int = 84

Here, the pattern ~y, .. is a partial match on the tuple,
extracting the first field with label y and ignoring the rest.
Partial patterns may be used to extract any subset of the
fields.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

ML ’24, September, 2024, Milan, Italy Chris Casinghino and Ryan Tjoa

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

When the type is not known (in the same sense that OCaml
requires a type to be known to disambiguate among construc-
tors), the compiler will reject a partial pattern. For example,
this program

let get_y t =
let ~y, .. = t in
y

is rejected with this error:
File "foo.ml", line 2, characters 8-14:
2 | let ~y, .. = t in

^^^^^^
Error: Could not determine the type of this
partial tuple pattern.

This example could be fixed by adding a type annotation to
the function’s parameter.
Labels may also be repeated in a tuple, and unlabeled

elements can be thought of as all sharing the same unique
label. When matching on such a tuple, the first occurrence of
a label in the pattern is bound to the first corresponding label
in the value, and so on. As a result, it’s also now possible to
partially match on a standard unlabeled tuple to retrieve the
first few elements.

2 Is it worth doing?
This language feature sparked considerable debate within
Jane Street’s OCaml compiler team before we decided to
implement it. In this section, we consider some of the argu-
ments for and against, and explain why we decided to add it
and what our experience has been in practice.
There is an obvious argument for the feature: tuples are

error prone. Because their elements are not labeled, it is easy
to mix up two values of the same type. And, for readers, it
can be hard to work out the purpose of some member of a
large tuple that would be perfectly clear with a label.

One solution is to use a record instead. But this requires a
type declaration, which can feel like a heavy-weight solution
particularly if the tuple is used in just as an accumulator or
the return value from one function. In practice, programmers
have adopted several work-arounds. These include:

• Using polymorphic variants as labels in tuples. We see
examples in real code that use this approach, as in:

let (`new_price new_price
, `new_size new_size)

= ...
This approach is lightweight for the programmer, but
comes with runtime costs if the compiler can not elim-
inate the variant blocks.

• Using OCaml’s object system. While OCaml’s object
system does essentially provide a notion of anony-
mous record that serves similar goals, we do not see
programmers use it for this purpose in practice. We
believe there are two main reasons: First, OCaml’s

object-oriented features are relatively rarely used, so
programmers do not feel familiar enough to use these
in a lightweight way. Second, like the previous ap-
proach, this comes with a dynamic cost.

• Simply using a tuple even though its meaning may be
unclear. We see this often in practice, as in the example
of Core_unix.pipe above. We judge the frequency
with which this approach is settled for, even when
it leads to unclear and error prone code, as strong
evidence for the value of labeled tuples.

A final consideration: The feature is popular. At time of
writing, it was made available within Jane Street approxi-
mately four months ago, and is already used in more than
2500 .ml files in our code base.

3 Design considerations, possible
extensions, and related systems

3.1 Reordering
Our design intentionally provides only limited facility for
reordering and partial matches (these are supported in pat-
terns when the type is known, and expressions are never
reordered). An alternative design could be more permissive,
providing a notion of record polymorphism that supports
reordering of expressions and patterns in all circumstances.

Existingwork formore flexible polymorphic records shows
they can be implemented with row polymorphism [4] or
record kinds [3]. An intermediate option would be to inter-
nally canonicalize the order of labeled tuple components
(e.g. considering x:int * y:int to be the same type as
y:int * x:int), which could offer more reordering than
our design without an explicit notion of record polymophism.

We prefer the current design for several reasons:

• Our goal for the feature is to provide a lightweight dual
to labeled function arguments, not a “record” version
of polymorphic variants. OCaml’s implementation of
labeled function arguments makes similar use of type
information to type applications.

• Labeled tuples offer better performance than the alter-
natives described above. Systems with record polymor-
phism typically require some kind of dynamic field
lookup to account for functions that work over dif-
ferent record layouts. Further, performance sensitive
code may care about the concrete layout of tuple fields
in memory for cache locality reasons—supporting re-
ordering of labeled tuple expressions would make their
performance behavior less controllable and predictable.

• The implementation of this feature is considerably
simpler than the alternatives.

SML’s flexible records is the language feature we are aware
of that is most closely related to labeled tuples. The primary
difference between these features is that flexible records
are canonically ordered based on the label names, while

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Labeled Tuples ML ’24, September, 2024, Milan, Italy

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

labeled tuples are not, as described above. OCaml’s nominally
typed records offer convenient reordering and projection
operations, taking pressure off of a feature like labeled tuples
to do the same—users can use labeled tuples for lightweight
local names where that makes sense, and records otherwise.

3.2 Projection
Our current implementation provides no facility for projec-
tion from a labeled tuple, though a partial match may be
used when the type is known. It would be straightforward
to similarly implement projection when the type is known,
and the main reason we have not is simply that the most
natural syntax is ambiguous with normal record projection.
We may add this in the future. Allowing labeled tuple pro-
jection even when the type is not known would require row
polymorphism, as discussed above.

3.3 Singleton labeled tuples
Since introducing this feature, many users have requested
“singleton labeled tuples”—essentially just the ability to label
arbitrary values. This feature does not seem desirable for
OCaml today in its most general form, as it overlaps in pur-
pose with labeled function arguments—should a function use
a labeled argument or a labeled value? Further, it would also
be ambiguous to parse due to the syntactic similarities to la-
beled arguments, though this may be resolvable by requiring
parentheses in some cases.
One might consider simply replacing labeled arguments

with labeled values, but it is not obvious how to achieve some
of the conveniences of labeled arguments, like the ability to
partially apply a function to any labeled argument. However,
a different possible feature, labeled function returns, would
be adequate to address many of the requests we have seen.
Labeled returns would be more straightforward to add to
OCaml, and we are considering doing so in the future.

References
[1] 2024. Jane Street OCaml Branch. https://github.com/ocaml-flambda/

flambda-backend.
[2] Jacques Garrigue. 2001. Labeled and optional arguments for Objective

Caml. In JSSST Workshop on Programming and Programming Languages,
Kameoka, Japan.

[3] Atsushi Ohori. 1995. A polymorphic record calculus and its compilation.
ACM Trans. Program. Lang. Syst. 17, 6 (nov 1995), 844–895. https:
//doi.org/10.1145/218570.218572

[4] Mitchell Wand. 1989. Type inference for record concatenation and
multiple inheritance. In Proceedings, Fourth Annual Symposium on Logic
in Computer Science.

3

https://github.com/ocaml-flambda/flambda-backend
https://github.com/ocaml-flambda/flambda-backend
https://doi.org/10.1145/218570.218572
https://doi.org/10.1145/218570.218572

	Abstract
	1 Language feature overview
	1.1 Reordering and partial patterns

	2 Is it worth doing?
	3 Design considerations, possible extensions, and related systems
	3.1 Reordering
	3.2 Projection
	3.3 Singleton labeled tuples

	References

