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Abstract. Formally verified parsers are powerful tools for preventing
the kinds of errors that result from ad hoc parsing and validation of
program input. However, verified parsers are often based on formalisms
that are not expressive enough to capture the full definition of valid input
for a given application. Specifications of many real-world data formats
include both a syntactic component and one or more non-context-free
semantic properties that a well-formed instance of the format must ex-
hibit. A parser for context-free grammars (CFGs) cannot determine on
its own whether an input is valid according to such a specification; it
must be supplemented with additional validation checks.
In this work, we present CoStar++, a verified parser interpreter with
semantic features that make it highly expressive in terms of both the
language specifications it accepts and its output type. CoStar++ pro-
vides support for semantic predicates, enabling the user to write seman-
tically rich grammars that include non-context-free properties. The in-
terpreter also supports semantic actions that convert sequential inputs
to structured outputs in a principled way. CoStar++ is implemented
and verified with the Coq Proof Assistant, and it is based on the ALL(*)
parsing algorithm. For all CFGs without left recursion, the interpreter
is provably sound, complete, and terminating with respect to a semantic
specification that takes predicates and actions into account. CoStar++

runs in linear time on benchmarks for four real-world data formats, three
of which have non-context-free specifications.

Keywords: parsing · semantic actions · interactive theorem proving

1 Introduction

The term “shotgun parsing” refers to a programming antipattern in which code
for parsing and validating input is interspersed with application code for pro-
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cessing that input. Proponents of high-assurance software argue for the use of
dedicated parsing tools as an antidote to this fundamentally insecure practice
[12]. Such parsers enable the user to write a declarative specification (e.g., a
grammar) that describes the structure of valid input, and they reject inputs
that do not match the specification, ensuring that only valid inputs reach the
downstream application code. Formally verified parsers offer even greater secu-
rity to the applications that rely on them. Verification techniques can provide
strong guarantees that a parser accepts all and only the inputs that are valid
according to the user’s specification.

However, dedicated parsing tools are not always expressive enough to capture
the full definition of valid input. For many real applications, the input specifi-
cation includes both a context-free syntactic component and non-context-free
semantic properties; in such a case, a parser for context-free grammars (CFGs)
provides limited value. For example, a CFG can represent the syntax of valid
XML, but it cannot capture the requirement that names in corresponding start
and end tags must match (assuming that the set of names is infinite). Simi-
larly, the syntactic specification for JSON is context-free, but some applications
impose the additional requirement that JSON objects (collections of key-value
pairs) contain no duplicate keys. Data dependencies are another common type of
non-context-free property; many packet formats have a “tag-length-value” struc-
ture in which a length field indicates the size of the packet’s data field. In each of
these cases, a CFG-based parser is an incomplete substitute for shotgun parsing
because it cannot enforce the semantic component of the input specification.

In this work, we present CoStar++, a verified parser interpreter1 with two
features—semantic predicates and semantic actions—that enable it to capture
semantically rich specifications like those described above. Predicates enable the
user to write input specifications that include non-context-free semantic proper-
ties. The interpreter checks these properties at runtime, ensuring that its output
is well-formed. Actions give the user fine-grained control over the interpreter’s
output type. Actions also play an important role in supporting predicates; the
interpreter must produce values with an expressive type in order to check in-
teresting properties of those values. CoStar++ builds on the CoStar parser
interpreter [11]. Like its predecessor, CoStar++ is based on the ALL(*) parsing
algorithm, and it is implemented and verified with the Coq Proof Assistant.

Extending CoStar with predicates and actions gives rise to several chal-
lenges. CoStar is guaranteed to detect syntactically ambiguous inputs (inputs
with more than one parse tree). In a semantic setting, the definition of ambiguity
is more complex; it can be syntactic (multiple parse trees for an input) or se-
mantic (multiple semantic values). In addition, it is not always possible to infer
one kind of ambiguity from the other, because two parse trees can correspond to
(a) two semantic values, (b) a single semantic value when the semantic actions
for the two derivations produce the same value, or (c) no semantic value at all

1 We use the term “parser interpreter” instead of “parser generator” because
CoStar++ does not generate source code from a grammar; it converts a grammar
to an in-memory data structure that a generic driver interprets at parse time.
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when predicates fail during the semantic derivations! Finally, detecting semantic
ambiguity is undecidable in the general case where semantic values do not have
decidable equality, and we choose not to require this property so that the in-
terpreter can produce incomparable values such as functions. However, it is still
possible to detect the absence of semantic ambiguity. In the current work, we
modify the CoStar ambiguity detection mechanism so that CoStar++ detects
uniquely correct semantic values, and it detects syntactic ambiguity in the cases
where semantic ambiguity is undecidable.

A second challenge is that ALL(*) as originally described [14] and as im-
plemented by CoStar is incomplete with respect to the CoStar++ semantic
specification. ALL(*) is a predictive parsing algorithm; at decision points, it
nondeterministically explores possible paths until it identifies a uniquely viable
path. This prediction strategy does not speculatively execute semantic actions or
evaluate semantic predicates over those actions, for both efficiency and correct-
ness reasons (the actions could alter mutable state in ways that cannot be un-
done). While this choice is reasonable in the imperative setting for which ALL(*)
was developed, it renders the algorithm incomplete relative to a predicate-aware
specification, because a prediction can send the parser down a path that leads
to a predicate failure when a different path would have produced a successful
parse. CoStar++ solves this problem by using a modified version of the ALL(*)
prediction algorithm that evaluates predicates and actions only when doing so
is necessary to guarantee completeness. CoStar++ semantic actions are pure
functions, so speculatively executing them during prediction is safe.

This paper makes the following contributions:

– We present CoStar++, an extension of the CoStar verified ALL(*) parser
interpreter that adds support for semantic predicates and actions. These new
semantic features increase the expressivity of both the language definitions
that the interpreter can accept and its output type.

– We present a modified version of ALL(*) prediction that CoStar++ uses to
ensure completeness in the presence of semantic predicates.

– We prove that for all CFGs without left recursion, CoStar++ is sound, com-
plete, and terminating with respect to a semantics-aware specification that
takes predicates and actions into account.

– We prove that CoStar++ identifies uniquely correct semantic values, and
that it detects syntactic ambiguity when semantic ambiguity is undecidable.

– We use CoStar++ to write grammars for four real-world data formats, three
of which have non-context-free semantic specifications, and we show that
CoStar++ achieves linear-time performance on benchmarks for these for-
mats. As part of the evaluation, we integrate the tool with the Verbatim
verified lexer interpreter [6,7] to create a fully verified front end for lexing and
parsing data formats.

CoStar++ consists of roughly 6,500 lines of specification and 7,000 lines of
proof. The grammars used in the performance evaluation comprise another 700
lines of specification and 100 lines of proof. CoStar++ and its accompanying
performance evaluation framework are open source and available online [9].
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Inductive json_value : Type :=
| JObj (kv_pairs : list (string * json_value))
| JArr (vs : list json_value)
| JBool (b : bool)
| JNum (i : Z)
| JStr (s : string)
| JNull.

Fig. 1: Algebraic data type representation of JSON values, shown in the concrete
syntax of Gallina, the functional programming language embedded in Coq.

Value ::= Object Jλ(ps,_).nodup psK? Jλ(ps,_).JObj psK!
| Array Jλ(vs,_).JArr vsK!
| . . .

Object ::= '{' Pair Pairs '}' Jλ(_,p,ps,_,_).p :: psK!
| '{' '}' Jλ_.[]K!

. . .

Fig. 2: JSON grammar fragment annotated with semantic predicates and actions.

The paper is organized as follows. In §2, we introduce CoStar++ by ex-
ample. We present the tool’s correctness properties in §3. We then discuss the
challenges of specifying the tool’s behavior on ambiguous input (§4) and ensuring
completeness after adding predicates to the tool’s correctness specification (§5).
In §6, we evaluate the tool’s performance and describe the semantic features of
the grammars used in the evaluation. Finally, we survey related work in §7.

2 CoStar++ by Example

In this section, we give an example of a simple grammar that includes a non-
context-free semantic property, and we sketch the execution of the CoStar++

parser that this grammar specifies, with a focus on the parser’s semantic features.

2.1 A Grammar for Parsing Duplicate-Free JSON

Suppose we want to use CoStar++ to define a JSON parser, and we only want
the parser to accept JSON input in which objects contain no duplicate keys. The
parser’s output type might look like the algebraic data type (ADT) in Figure
1. To obtain a parser that produces values of this type, and that enforces the
“unique keys” invariant, we can provide CoStar++ with the grammar excerpted
in Figure 2. A CoStar++ grammar production has the form X ::= γ JpK? JfK!,
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where X is a nonterminal, γ is a sequence of terminals and nonterminals,2 p is
an optional semantic predicate, and f is a semantic action.

Semantic actions build the semantic values that the parser produces. An
action is a function with a dependent type that is determined by the grammar
symbols in the accompanying production. An action for production X ::= γ has
type JγK→ JXK, where the semantic tuple type JγK is computed as follows:

J•K = 1

JsβK = JsK× JβK

and JsK is a user-defined mapping from grammar symbols to semantic types.
For the example grammar, JValueK = json_value (i.e., the parser produces a
json_value each time it processes a Value nonterminal), and JObjectK = list
(string * json_value).

In addition, productions are optionally annotated with semantic predicates.
A predicate for productionX ::= γ has type JγK→ B. At parse time, CoStar++

applies predicates to the semantic values that the actions produce and rejects
the input when a predicate fails.

A production like this one:

Value ::= Object Jλ(prs,_).nodupKeys prsK? Jλ(prs,_).JObj prsK!

can be read as follows: “To produce a result of type JValueK, first produce a tuple
of type JObjectK and apply predicate Jλ(prs,_).nodupKeys prsK? to it (where
the nodupKeys function checks whether the string keys in an association list are
unique). If the check succeeds, apply action Jλ(prs,_).JObj prsK! to the tuple.”

2.2 Parsing Valid and Invalid Input

In Figure 3, we illustrate how CoStar++ realizes the example JSON grammar’s
semantics by applying CoStar++ to the grammar and tracing the resulting
parser’s execution on valid JSON input.

CoStar++ is implemented as a stack machine with a small-step semantics.
At each point in its execution, the machine performs a single atomic update to
its state based on its current configuration. Figure 3 shows the machine’s stack at
each point in the trace (other machine state components are omitted for ease of
exposition). Each stack frame [α & v̄, β] holds a sequence of processed grammar
symbols α, a semantic tuple v̄ : JαK for the processed symbols, and a sequence
of unprocessed symbols β. In the initial state σ0, the stack consists of a single
frame [• & tt, Value] that holds an empty sequence of processed symbols •, a
semantic value of type J•K (tt, the sole value of type unit), and a sequence of
unprocessed symbols that contains only the start symbol Value.
2 Throughout this paper, nonterminals begin with capital letters and terminals appear
in single quotes. When it is necessary to distinguish between terminals and the literal
values that they match, we write terminal names in angle brackets (e.g., <int> for
a terminal that matches an integer).
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• Value
tt

σ0

• Object
tt
• Value
tt

σ1

• '{' Pair Pairs '}'
tt
• Object
tt
• Value
tt

σ2

'{' Pair Pairs '}'
(tt, tt)
• Object
tt
• Value
tt

σ3

. . .

Object •
( [("k1", JStr "foo"),

("k2", JNum 42)], tt )
• Value
tt

σ4

Value •
( JObj [("k1", JStr "foo"),

("k2", JNum 42)], tt )
σ5

Fig. 3: Execution trace of a CoStar++ JSON parser applied to the valid string
{"k1": "foo", "k2": 42}. A stack frame contains processed grammar symbols α
(upper left portion of the frame), unprocessed grammar symbols β (upper right
portion), and semantic tuple v̄ : JαK (lower portion).

Each machine state also stores the sequence of remaining tokens. A token
(a & v) is the dependent pair of a terminal symbol a and a literal value v : JaK.
(In our performance evaluation, we use a verified lexing tool that produces tokens
of this type; see Section 6 for details.) In the Figure 3 example, the input string
before tokenization is:

{"k1": "foo", "k2": 42}

Thus, in initial state σ0, the machine holds tokens for the full input string:
('{' & tt), (<str> & "k1"), (':' & tt), (<str> & "foo") . . .

In the transition from σ0 to σ1, the machine performs a push operation. A
push occurs when the top stack symbol (the next unprocessed symbol in the top
stack frame) is a nonterminal—Value, in this case. During a push, the machine
examines the remaining tokens to determine which grammar right-hand side to
push onto the stack. The prediction subroutine that performs this task is what
distinguishes ALL(*) from other parsing algorithms. Parr et al. [14] describe the
prediction mechanism in detail; in brief, the parser launches a subparser for each
candidate right-hand side and advances the subparsers only as far as necessary
to identify a uniquely viable choice. In the example, the prediction mechanism
identifies the right-hand side Object as the uniquely viable choice and pushes it
onto the stack in a new frame.

The transition from σ1 to σ2 is another push operation, in which the predic-
tion mechanism identifies '{' Pair Pairs '}' as the unique right-hand side for
nonterminal Object that may produce a successful parse. To transition from σ2

to σ3, the machine performs a consume operation. A consume occurs when the
top stack symbol is a terminal a. The machine matches a against terminal a′
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from the head remaining token. In this case, the top stack terminal '{' matches
the terminal in token ('{' & tt), so the machine pops the token and stores its
semantic value tt in the current frame.

After several more operations, the machine reaches state σ4. At this point,
the machine has fully processed nonterminal Object, producing a semantic value
of type JObjectK = list (string * json_value), there are no more symbols left
to process in the top frame, and nonterminal Value in the frame below has
not yet been fully processed (we call such a nonterminal “open”, and the frame
containing it the “caller” frame). In such a configuration, the machine performs
a return operation, which involves the following steps:

1. The machine retrieves the predicate and action for the production being re-
duced. In the Figure 3 example, the production is Value ::= Object, the pred-
icate is Jλ(ps,_).nodup psK? (where the nodup function checks whether string
keys in an association list are unique), and the action is Jλ(ps,_).JObj psK!.

2. The machine applies the predicate to the semantic tuple v̄ in the top frame.
In the example, the predicate evaluates to true because the list of key/value
pairs contains no duplicate keys.

3. If the predicate succeeds (as it does in the example), the machine applies
the action to v̄, producing a new semantic value v′. It then pops the top
frame, moves the open nonterminal in the caller frame to the list of processed
symbols, and stores v′ in the caller frame. In this case, the machine makes
Value a processed symbol (the nonterminal has now been fully reduced), and it
stores v′ = JObj [("k1", JStr "foo"), ("k2", JNum 42)] in the caller frame.

In state σ5, the machine is in a final configuration; there are no unprocessed sym-
bols in the top frame, and no caller frame to return to. In such a configuration,
the machine halts and returns the semantic value it has accumulated for the start
symbol. It tags the value as Unique or Ambig based on the value of another ma-
chine state component: a boolean flag indicating whether the machine detected
ambiguity during the parse. In our example, the input is unambiguous, so the
result of the parse is Unique (JObj [("k1", JStr "foo"), ("k2", JNum 42)]).

We now describe how the example JSON parser’s behavior differs on the
string {"k1": "foo", "k1": 42}, which is syntactically well-formed but violates
the “no duplicate keys” property. During the first several steps involved in pro-
cessing this string, the machine stacks match those in Figure 3. When the ma-
chine reaches a state that corresponds to state σ4 in Figure 3, it attempts to
perform a return operation by applying the predicate for production Value ::=
Object to the list of key/value pairs [("k1", JStr "foo"), ("k1", JNum 42)].
This time, the predicate fails because of the duplicate keys, so the machine halts
and returns a Reject value along with a message describing the failure.

3 Interpreter Correctness

In this section, we describe the CoStar++ interpreter’s correctness specification
and then present the interpreter’s high-level correctness properties.
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SemValueDer: s
v : JsK−−−−→ w

TerminalSemDer

a
v−→ (a & v)

NonterminalSemDer
X ::= γ JpK? JfK! ∈ G
γ

v̄−→ w p(v̄) = true

X
f(v̄)−−−→ w

SemValuesDer: γ
v̄ : JγK−−−−→ w

NilSemDer

• tt−→ ε

ConsSemDer
s
v−→ w1 β

v̄−→ w2

sβ
(v,v̄)−−−→ w1w2

TreeDer: s
t : tree−−−−→ w

TerminalLeafDer

a
Leaf(a)−−−−−→ (a & v)

NonterminalNodeDer
X ::= γ ∈ G γ

t̄−→ w

X
Node(X,t̄)−−−−−−−→ w

ForestDer: γ
t̄ : list tree−−−−−−−→ w

NilForestDer

• •−→ ε

ConsForestDer
s
t−→ w1 β

t̄−→ w2

sβ
t,t̄−→ w1w2

Fig. 4: Grammatical derivation relations for semantic values and parse trees.

3.1 Correctness Specification

CoStar++ is sound and complete relative to a grammatical derivation relation
called SemValueDer with the judgment form s

v−→ w, meaning that symbol s
derives word w, producing semantic value v. Figure 4 shows this relation as well
as a mutually inductive one, SemValuesDer, over sentential forms (grammar
right-hand sides). This latter relation has the judgment form γ

v̄−→ w (symbols γ
derive word w, producing semantic tuple v̄). In terms of predicates and actions,
the key rule is NonterminalSemDer, which says that if (a) X ::= γ JpK? JfK!
is a grammar production; (b) the right-hand side γ derives word w, producing
the semantic tuple v̄; and (c) v̄ satisfies predicate p, then applying action f to v̄
produces a correct value for left-hand nonterminal X.

Portions of the correctness theorems refer to the existence of correct parse
trees for the input. Parse tree correctness is defined in terms of a pair of mutually
inductive relations, TreeDer and ForestDer (also in Figure 4). These rela-
tions are isomorphic to SemValueDer and SemValuesDer, but they produce
parse trees and parse tree lists (respectively), where a parse tree is an n-ary tree
with terminal-labeled leaves and nonterminal-labeled internal nodes.

3.2 Parser Correctness Theorems

The main CoStar++ correctness theorems describe the behavior of the inter-
preter’s top-level parse function, which has the type signature shown in Figure
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parse (g : grammar)
(Hw : grammar_wf g)
(s : nonterminal)
(ts : list token) :
parse_result s

(a) parse type signature

parse_result (x : nonterminal) :=
| Unique (v : JxK)
| Ambig (v : JxK)
| Reject (s : string)
| Error (e : parse_error)

(b) parse return type

Fig. 5: The type signature of the interpreter’s top-level entry point (a), and the
interpreter’s return type (b).

5a. The parse function takes a grammar g, a proof that g is well-formed,3 a start
nonterminal s, and a token sequence ts. The function produces a parse_result
s, a dependent type indexed by s. As shown in Figure 5b, a parse_result x is
either a semantic value of type JxK tagged as Unique or Ambig (indicating whether
the input is ambiguous), a Reject value with a message explaining why the in-
put was rejected, or an Error value indicating that the stack machine reached
an inconsistent state.

We list the CoStar++ high-level correctness theorems below, and we high-
light several interesting aspects of their proofs in Sections 4 and 5. Each theorem
assumes a non-left-recursive grammar G.
Theorem 1 (Soundness, unique derivations). If parse applied to G, non-
terminal S, and word w returns a semantic value Unique(v), then v is the sole
correct semantic value for S and w.

Theorem 2 (Soundness, ambiguous derivations). If parse applied to G,
nonterminal S, and word w returns a semantic value Ambig(v), then v is a correct
semantic value for S and w, and there exist two correct parse trees t and t′ for
S and w, where t 6= t′.

Theorem 3 (Error-free termination). The interpreter never returns an Error
value.

Theorem 4 (Completeness). If v is a correct semantic value for nonterminal
S and word w, then either (a) v is the sole correct semantic value for S and w
and the interpreter returns Unique(v), or (b) multiple correct parse trees exist
for S and w, and the interpreter returns a correct semantic value Ambig(v′).

The theorems above have been mechanized in Coq. Each theorem has a proof
based on (a) an invariant I over the machine state that implies the high-level
theorem when it holds for the machine’s final configuration; and (b) a preserva-
tion lemma showing that each machine operation (push, consume, and return)
preserves I. Section 5.2 contains an example of such an invariant.
3 Internally, a CoStar++ grammar is a finite map in which each base production
X ::= γ maps to an annotated production X ′ ::= γ′ JpK? JfK!. The well-formedness
property says that X = X ′ and γ = γ′ for each key/value pair in the map. This
property enables the interpreter to retrieve the predicate and action for key X := γ.
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X ::= <int> Y Jλ(i,(s,_),_).i - String.length sK!
| Z <bool> Jλ((_,s),b,_).if b then String.length s else 0K!

Y ::= <string> <bool> Jλ(s,b,_).(s,b)K!

Z ::= <int> <string> Jλ(i,s,_).(i,s)K!

Fig. 6: Grammar that recognizes an <int><string><bool> sequence. For some
inputs, two different syntactic derivations produce the same semantic value.

4 Semantic Actions and Ambiguity

There is an apparent type mismatch between the “unique” and “ambiguous”
soundness theorems in Section 3. According to Theorem 1, a Unique(v) parse
result indicates that v is a uniquely correct semantic value for the input, while
Theorem 2 says that an Ambig(v) result implies the existence of multiple correct
parse trees for the input. The reason for this asymmetry is that syntactically
ambiguous inputs may not be ambiguous at the semantic level; actions can map
two distinct parse trees for an input to the same semantic value, and predicates
can eliminate semantic ambiguity by rejecting semantic values as malformed. For
these reasons, the problem of identifying semantic ambiguity is undecidable when
semantic values lack decidable equality. When CoStar++ flags an ambiguous
input, it is only able to guarantee that ambiguity exists at the syntactic level.

We illustrate this point with an example involving the somewhat contrived
grammar in Figure 6. Start symbol X matches an <int><string><bool> sequence
in two possible ways—one involving the first right-hand side for X, and one
involving the second right-hand side. These two right-hand sides can be used to
derive two distinct parse trees for such a token sequence (we represent leaves as
terminal symbols for readability):

(1a) Node X [<int>, Node Y [<string>, <bool>]]
(1b) Node X [Node Z [<int>, <string>], <bool>]

However, while any <int><string><bool> sequence is ambiguous at the syntactic
level, only some inputs are semantically ambiguous. For example, on input

(<int> & 10) (<string> & "apple") (<bool> & false)

the actions attached to the two right-hand sides for X produce two distinct values:

(2a) 10 - String.length "apple" = 5
(2b) if false then String.length "apple" else 0 = 0

However, replacing the literal value in the <bool> token with true makes the two
derivations produce the same semantic value:

(3a) 10 - String.length "apple" = 5
(3b) if true then String.length "apple" else 0 = 5
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In theory, when CoStar++ identifies multiple semantic values for these exam-
ples, it could determine whether the input is semantically ambiguous by compar-
ing the values, because integer equality is decidable. However, semantic types are
user-defined, and we do not require them to have decidable equality; the user
may want the interpreter to produce functions or other incomparable values.
Therefore, in the general case, the interpreter can only certify that the input has
two distinct parse trees—this guarantee is the one that Theorem 2 provides.

5 Semantic Predicates and Completeness

One of the main challenges of implementing and verifying CoStar++ was ensur-
ing completeness in the presence of semantic predicates. ALL(*) is a predictive
parsing algorithm; at decision points, it launches subparsers that speculatively
explore alternative paths. ALL(*) as originally described [14] does not apply
semantic actions or check CoStar++-style predicates at prediction time. How-
ever, a predicate-oblivious prediction algorithm results in an interpreter that
is incomplete relative to the SemValueDer specification (Figure 4). In other
words, it can make a choice that eventually causes the interpreter to reject input
as invalid due to a failed predicate, when a different choice would have led to a
successful parse. In this section, we present a modification to the ALL(*) predic-
tion mechanism and prove that it makes the interpreter complete with respect
to its semantic specification.

5.1 A Semantics-Aware Prediction Mechanism

The semantics-aware version of CoStar++ uses a modified version of ALL(*)
prediction that is guaranteed not to send the interpreter down a “bad path.” In
designing this modification, we faced a tradeoff between speed and expressive-
ness; checking predicates and building semantic values along all prediction paths
is expensive, but it is sometimes necessary to ensure completeness.

Our solution leverages the fact that the original ALL(*) prediction mecha-
nism addresses a similar problem; it is actually a combination of two prediction
strategies that make different tradeoffs with respect to speed and expressiveness:

– SLL prediction is an optimized algorithm that ignores the initial parser
stack at the start of prediction. As a result, subparser states are compact and
recur frequently, which makes them amenable to caching. The tradeoff is that
because of the missing context, SLL prediction must sometimes overapproxi-
mate the parser’s behavior by simulating a return to all possible contexts.

– LL prediction is a slower but sound algorithm in which subparsers have ac-
cess to the initial parser stack; the algorithm is thus a precise nondeterministic
simulation of the parser’s behavior. When the SLL algorithm detects an am-
biguity, the prediction mechanism fails over to the LL strategy to determine
whether the ambiguity is genuine or involves a spurious path introduced by
the overapproximation; using the result of SLL prediction directly in such a
case would render the parser incomplete.
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Semantics-aware prediction works as follows:

– SLL prediction is unchanged; subparsers do not build semantic values or check
semantic properties. SLL is thus still an overapproximation of the parser; not
evaluating the predicates is equivalent to assuming that they succeed.

– LL prediction builds semantic values and checks semantic properties along all
paths. It thus remains a precise nondeterministic simulation of the parser.

This approach assumes that most predictions are unambiguous without consid-
ering predicates, and the more expensive LL strategy is thus rarely required.

5.2 A Backward-Looking Completeness Invariant

Adding semantic features to LL prediction makes CoStar++ complete with
respect to the SemValueDer specification. Theorem 4 (the interpreter com-
pleteness theorem) relies on the following lemma:

Lemma 1 (Completeness modulo ambiguity detection). If v is a correct
semantic value for nonterminal S and word w, then there exists a semantic value
v′ such that the interpreter returns either Unique(v′) or Ambig(v′) for S and w.

In essence, this lemma says that the interpreter does not reject valid input.
Its proof is based on an invariant over the machine state guaranteeing that no
machine operation can result in a rejection.

In the absence of semantic predicates, a natural definition of this invariant
says that the concatenated unprocessed stack symbols recognize the remaining
token sequence. Such an invariant is purely forward-looking; it refers only to
symbols and tokens that the interpreter has not processed yet. However, this
invariant is too weak to prove that CoStar++ never rejects valid input, because
a predicate can fail on semantic values that were produced by earlier machine
steps. To rule out such cases, we need an invariant that is both backward- and
forward-looking; i.e., one that refers to both the “past” and “future” of the parse.

The CoStar++ completeness invariant, StackAcceptsSuffix_I, appears
in Figure 7. It holds when the remaining tokens can be split into a prefix w1 and
suffix w2 such that the unprocessed symbols β in the top stack frame produce
a semantic tuple for w1, and the auxiliary invariant FramesAcceptSuffix_I
holds for the lower frames and w2.

The FramesAcceptSuffix_I definition (also in Figure 7) is parametric
over symbols γ and semantic tuple v̄ : JγK. The v̄ parameter represents the
“incoming” tuple during the eventual return operation from the frame above the
ones in scope. The base case of FramesAcceptSuffix_I says that if the list
of remaining frames is empty, then the remaining token sequence must be empty
as well. In the case of a non-empty list of frames, the following properties hold:

– The remaining tokens can be split into a prefix w1 and suffix w2 such that
the unprocessed symbols in the head frame produce a semantic tuple for w1.
This property (which appears in StackAcceptsSuffix_I as well) is the
forward-looking portion of the invariant.
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FramesAcceptSuffix_I : (v̄ : JγK), φ . w

FramesAcceptSuffix_Nil

v̄, • . ε

FramesAcceptSuffix_Cons
v̄γ : JγK v̄α : JαK v̄β : JβK p : JγK→ B f : JγK→ JXK

β
v̄β−−→ w1 X ::= γ JpK? JfK! ∈ G p(v̄γ) = true

revTup(v̄α) J++K (f(v̄γ), v̄β), φ . w2

v̄γ , [α & v̄α, Xβ]φ . w1w2

StackAcceptsSuffix_I : φ I w

v̄α : JαK v̄β : JβK β
v̄β−−→ w1 revTup(v̄α) J++K v̄β , φ . w2

[α & v̄α, β]φ I w1w2

Fig. 7: The StackAcceptsSuffix_I machine state invariant over stack φ and
token sequence w. The invariant guarantees that the interpreter does not reject
valid input. The J++K function concatenates two semantic tuples, and the revTup
function reverses a semantic tuple.

– There exists a grammar production X ::= γ JpK? JfK!, where X is the open
nonterminal in the head frame and γ is the right-hand side from the frame
above, such that semantic tuple v̄γ from the frame above satisfies p. This
condition is the backward-looking portion of the invariant.

– FramesAcceptSuffix_I holds for the remaining frames and w2.

Lemma 2 (Completeness invariant prevents rejection). If StackAc-
ceptsSuffix_I holds at machine state σ, then a machine transition out of
σ never produces a Reject result.

Lemma 3 (Preservation of completeness invariant). If StackAcceptsSuf-
fix_I holds at machine state σ and σ  σ′, then StackAcceptsSuffix_I
holds at state σ′.

6 Performance Evaluation

We evaluate CoStar++’s parsing speed and asymptotic behavior by extracting
the tool to OCaml source code and recording its execution time on benchmarks
for four real-world data formats. In each experiment, we provide CoStar++ with
a grammar for a data format to obtain a parser for that format, and we record
the parser’s execution time on valid inputs of varying size. The benchmarks are
as follows:



14 S. Lasser et al.

– JSON is a popular format for storing and exchanging structured data. The
actions in our JSON grammar build an ADT representation of a JSON value
with a type similar to the one in Figure 1. The predicates ensure that JSON
objects contain no duplicate keys. The JSON data set contains biographical
information for US Members of Congress [1].

– PPM is a text-based image file format in which each pixel is represented
by a triple of (red, green, blue) values. A PPM file includes a header with
numeric values that specify the image’s width and height, and the maximum
value of any pixel component. The actions in our PPM grammar build a
record that contains the header values and a list of pixels. The predicates
validate the non-context-free dependencies between the image’s header and
pixels. We generated a PPM data set by using the ImageMagick command-
line tool convert to convert a single PPM image to a range of different sizes.

– Newick trees are an ad hoc format for representing arbitrarily branching
trees with labeled edges. They are used in the evolutionary biology commu-
nity to represent phylogenetic relationships. The Newick grammar’s actions
convert an input to an ADT representation of an arbitrarily branching tree.
Our Newick data set comes from the 10kTrees Website, Version 3 [2], a public
database of phylogenetic trees for various mammalian orders.

– XML is a widely used format for storing and transmitting structured data.
An XML document is a tree of elements; each element begins and ends with
a string-labeled tag, and the labels in corresponding start and end tags must
match—a non-context-free property in the general case where the set of valid
labels is infinite. The actions in our XML grammar build an ADT representa-
tion of an XML document, and the predicates check that corresponding tags
contain matching labels. Our XML data set is a portion of the Open American
National Corpus [13], a collection of English texts with linguistic annotations.

CoStar++ requires tokenized input. We use the Verbatim verified lexer in-
terpreter [6,7] to obtain lexers for all four formats. In the benchmarks, we use
these lexers to pre-tokenize each input before parsing it.

We ran the CoStar++ benchmarks on a laptop with 4 2.5 GHz cores, 7 GB
of RAM, and the Ubuntu 16.04 OS. We compiled the extracted CoStar++ code
with OCaml compiler version 4.11.1+flambda at optimization level -O3.

The CoStar++ benchmark results appear in Figure 8. Each scatter plot
point represents the parse time for one input file, averaged over ten trials. While
the worst-case time complexity of ALL(*) is O(n4) [14], and CoStar++ lacks an
optimization based on the graph-structured stack data structure [16] that factors
into this bound, the tool appears to perform linearly on the benchmarks. For each
set of results, we compute a least-squares regression line and a Locally Weighted
Scatterplot Smoothing (LOWESS) curve [3]. LOWESS is a non-parametric tech-
nique for fitting a smooth curve to a set of data points; i.e., it does not assume
that the data fit a particular distribution, linear or otherwise. The LOWESS
curve and regression line correspond closely for each set of results, suggesting
that the relationship between input size and execution time is linear.
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Fig. 8: Input size vs. CoStar++ average execution time on four benchmarks.

7 Related Work

CoStar++ builds on CoStar [11], another tool based on the ALL(*) algorithm
and verified in Coq. CoStar produces parse trees that are generic across gram-
mars modulo grammar symbol names. It is correct in terms of a specification in
which a parse tree is the witness to a successful derivation. CoStar++ improves
upon this work by supporting semantic actions and predicates.

ALL(*) was developed for the ANTLR parser generator [14]. While ALL(*)
as originally described and as implemented in ANTLR supports a notion of se-
mantic predicates, its prediction mechanism does not execute semantic actions,
and thus cannot evaluate predicates over the results of those actions. The original
algorithm is therefore incomplete with respect to our predicate-aware specifica-
tion. These design choices are reasonable in terms of efficiency, and in terms of
correctness in an imperative setting. It is potentially expensive to execute pred-
icates and actions along a prediction path that the parser does not ultimately
take. More importantly, doing so can produce counterintuitive behavior when the
actions alter mutable state in ways that cannot be easily undone. These concerns
do not apply to our setting, in which semantic actions are pure functions.

Several existing verified parsers for CFGs support some form of semantic
actions. Jourdan et al. [8] and Lasser et al. [10] present verified parsing tools
based on the LR(1) and LL(1) parsing algorithms, respectively. Both tools rep-
resent a semantic action as a function with a dependent type computed from
the grammar symbols in its associated production. CoStar++ uses a similar
representation of predicates and actions. Edelmann et al. [5] describe a parser
combinator library and an accompanying type system that ensures that any
well-typed parser built from the combinators is LL(1); such a parser therefore
runs in linear time. Danielsson [4] and Ridge [15] present similar parser combi-
nator libraries that can represent arbitrary CFGs but do not provide the linear
runtime guarantees of LL(1) parsing.
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