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Abstract
Parsers are security-critical components of many software
systems, and verified parsing therefore has a key role to play
in secure software design. However, existing verified parsers
for context-free grammars are limited in their expressiveness,
termination properties, or performance characteristics. They
are only compatible with a restricted class of grammars, they
are not guaranteed to terminate on all inputs, or they are
not designed to be performant on grammars for real-world
programming languages and data formats.

In this work, we present CoStar, a verified parser that ad-
dresses these limitations. The parser is implemented with the
Coq Proof Assistant and is based on a purely functional adap-
tation of the ALL(*) parsing algorithm. CoStar is compatible
with arbitrary non-left-recursive grammars; if the parser is
applied to a non-left-recursive grammar, it produces a cor-
rect parse tree for its input whenever such a tree exists, and
it correctly detects ambiguous inputs. CoStar also provides
strong termination guarantees; it terminates without error
on all inputs when applied to a non-left-recursive grammar.
The parser is therefore a decision procedure for language
membership. Finally, CoStar achieves linear-time perfor-
mance on a range of unambiguous grammars for commonly
used languages and data formats.
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Formal software verification;
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1 Introduction
Parsers are natural targets for formal verification. While its
theoretical foundations are well-understood, parsing is error-
prone in practice. Parsers are also important components
of high-assurance software; applications often rely on them
to consume input from untrusted sources. Parsers are thus
relatively easy to specify, hard to implement correctly, and

safety-critical: a combination of traits that makes them good
candidates for the application of formal methods.

Parser vulnerabilities and their security consequences are
well-documented. In recent years, faulty parsers have leaked
user data from popular online services [16], allowed attack-
ers to obtain the private data of nearly 150 million people
from a major credit agency [14, 26], and enabled remote
code execution on networked devices [15, 21, 25, 27]. These
examples demonstrate both the safety-criticality of parsing
and the challenge of implementing it in a trustworthy way.
This challenge has motivated several research efforts on

verified parsing, spanning a range of language representa-
tions, algorithms, and verification techniques. In terms of
verified parsers for context-free grammars (CFGs), the limita-
tions of prior work fall chiefly into three categories. Verified
top-down predictive parsers [7, 22] are limited in their ex-
pressiveness. They are only compatible with LL(1) grammars;
i.e., grammars that can be parsed unambiguously given one
token of lookahead. Verified bottom-up parsers [2, 18] are
limited in the strength of their termination guarantees. They
do not guarantee termination on all inputs, and thus are not
decision procedures for language membership. Finally, veri-
fied parsers for general CFGs [6, 8, 9, 32] are limited in their
claims about performance on real-world grammars. They are
designed to be compatible with all CFGs, including those
that are highly ambiguous, and to return multiple parse trees
or similar values for their input. These traits are likely to
hinder fast and predictable performance on the deterministic
grammars that are sufficient for many practical applications.

In this work, we present a verified parser1 that addresses
these limitations. Our parser is based on the ALL(*) parsing
algorithm, which forms the core of the popular ANTLR 4
parser generator [30]. ALL(*) is expressive; it is compatible
with a broad class of CFGs. ALL(*) is also amenable to formal
reasoning about its termination properties. It is a top-down
predictive algorithm, which enables us to leverage prior work
on proving error-free termination for a simpler algorithm
with a similar high-level structure [22]. In addition, ALL(*)
achieves linear-time performance on grammars for many

1The term “parser” sometimes refers to a tool that processes a single gram-
mar. Our tool is parametric over a grammar that it interprets at parse time.
Throughout, we use the term “parser” for brevity.
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programming languages and data formats [30], and the pop-
ularity of ANTLR suggests that ALL(*) is well-suited to a
wide range of applications.

This paper makes the following contributions:

• We present CoStar, an ALL(*) parser implemented
and verified with the Coq Proof Assistant [5].

• We give proofs of CoStar’s soundness, error-free ter-
mination, and completeness for all CFGs without left
recursion. The parser produces a correct parse tree
for its input whenever such a tree exists, and it is a
decision procedure for language membership.

• We prove that CoStar correctly detects ambiguity; i.e.,
it correctly labels parse trees as unique or ambiguous.

• We show that CoStar achieves linear-time perfor-
mance on unambiguous grammars for real languages
and data formats, including grammars that other veri-
fied top-down parsers do not handle.

Our work is also a case study on implementing a small-step
interpreter with a big-step correctness specification. This
design lends itself to an elegant invariant-based style of ver-
ification. We prove each big-step property by defining an
invariant over the parser’s state that entails the property.
This approach shifts the verification burden to the task of
proving that each parser step preserves the invariant. It also
leads to a clean separation of concerns; we are able to isolate
the thorny termination proofs from the actual code, produc-
ing an implementation that resembles what a programmer
might write in a language with unguarded recursion.
The definitions and theorems in this paper have been

mechanized in Coq. The development consists of roughly
5,000 lines of specification and 5,000 lines of proof. It is
available online via a public URL [13].

The paper is organized as follows. In §2, we briefly intro-
duce ALL(*) parsing. We outline the CoStar implementation
in §3. We present its termination properties in §4 and cor-
rectness in §5. In §6, we give performance evaluation results.
We discuss related work in §7, and offer conclusions and
plans for future work in §8.

2 Overview of ALL(*) Parsing
The ALL(*) algorithm was introduced by Parr et al. [30]. It
shares its high-level structure with LL(k) [23] and LL(*) [29].
These algorithms are top-down and predictive; each one
conceptually builds a parse tree starting from the root node,
and examines the remaining tokens to decide how to replace
grammar left-hand sides (i.e., nonterminals) with right-hand
sides. What distinguishes ALL(*) from its predecessors is its
more powerful prediction mechanism, which has two key
components: dynamic grammar analysis for expressiveness,
and memoization of prediction steps for efficiency.
At each decision point, ALL(*) calls an adaptivePredict

prediction routine that launches multiple subparsers: one

per grammar right-hand side for the nonterminal under con-
sideration. The subparsers advance in lockstep, consuming
one token at a time, with each subparser dying off when it
fails to recognize a token. This process continues until all
subparsers fail (there are no viable right-hand sides), one
subparser remains (there is a unique viable right-hand side),
or the prediction mechanism detects ambiguity in the gram-
mar. In this third case, ALL(*) alerts the user and chooses one
of the ambiguous alternatives. By analyzing the grammar
dynamically, ALL(*) is able to accept grammars for which
computing lookahead information statically is infeasible.
ALL(*) prediction achieves good performance through

a cache-based optimization. The adaptivePredict routine
caches each analysis step in a deterministic finite automaton
(DFA); a call to the routine yields both a prediction and an
updated cache. Before adaptivePredict performs a grammar
analysis step, it checks whether that step appears as a transi-
tion in the DFA, thereby avoiding redundant computations.
This optimization makes ALL(*) efficient in practice. Parr
et al. [30] prove that ALL(*) can take O(n4) time to parse n
tokens, but they demonstrate that it runs in linear time on
many grammars of practical interest.

3 A Verifiable ALL(*) Implementation
In this section, we describe the structure of CoStar, focusing
on aspects of the parser’s design that make it amenable
to reasoning about its termination and correctness. Figure
1 contains key CoStar definitions that we discuss in this
section and throughout the paper.

3.1 Top-Level API
The entry point to CoStar is the parse function, which takes
a grammar G, a start symbol S ∈ N , and an input word w. It
returns one of the following values:

• A parse tree v with S at the root andw at the leaves.
The tree is labeled Unique or Ambig, depending on
whether v is the sole S-rooted tree forw .

• A Reject value indicating thatw < L(G).
• An Error value indicating that the parser reached an
inconsistent state. (We later prove that this result never
occurs when G satisfies a well-formedness condition.)

At a high level, the function simply passes an appropriate
set of initial arguments to a stack machine—the heart of the
CoStar implementation. The underlying stack machine has
three main components: (1) a machine state σ ; (2) a step

function that performs a single atomic update to the state;
and (3) a multistep function that repeatedly calls step until
the state reaches one of the final values listed above. Figure
2 depicts a trace of the machine’s execution on toy input; we
use this figure throughout the paper as a source of examples.

In the next two sections, we describe machine states and
the step function. The notable feature of multistep is its
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complex termination proof, so we defer discussion of that
function to Section 4.

3.2 Machine States
As the stack machine runs, it maintains several interrelated
pieces of information in the machine state σ :

• A prefix stack holding grammar symbols that the
machine has already matched against a prefix of the
tokens. We call these symbols “processed.” The prefix
stack also stores parse trees that represent a partial
derivation for the processed symbols and prefix. In
the case of a successful parse, these trees will become
subtrees of the parser’s final return value.
At state (σ6) in Figure 2, the top prefix stack frame
contains the trees Leaf(a) andNode(A, Leaf(b)). It also
contains the processed symbols a and A, but we have
omitted them from the figure for space reasons; one
can simply read them off the roots of the trees.

• A suffix stack holding grammar symbols to match
against the remaining tokens. We call these symbols
“unprocessed,” and we call the head symbol in the top
frame the “top stack symbol.”
At state (σ1) in Figure 2, the two suffix stack frames
contain the unprocessed symbols Ad and S, respec-
tively, and the top stack symbol is A.

• A cache that stores the results of previous prediction
steps for later reuse (details appear in Section 3.4).

• The remaining sequence of tokens to parse.
• A finite set of visited nonterminals. This set is used
to ensure that the machine terminates even on left-
recursive grammars (details appear in Section 4.1).

• A uniqueness flag indicating whether the machine
has detected that the input word is ambiguous. Figure
2 does not show this component of the state because
the input is unambiguous, so the flag remains true
throughout the parse.

3.3 Single-Step Parser Operations
The step function examines the current machine state σ and
performs one of the following operations, producing a new
state σ ′ (we write σ { σ ′ to represent such an operation):

• consume: σ is in a consume configuration when the
top stack symbol is a terminal a. The machine matches
a against the terminal of the next token t; if the match
succeeds, the machine pops a and t , and stores Leaf(t)
on the prefix stack.
In Figure 2, the transition from (σ2) to (σ3) is a con-
sume operation. The machine’s top stack terminal a
matches the terminal of the next token, so it adds a
leaf containing that token to the prefix stack.

• push: σ is in a push configuration when the top stack
symbol is a nonterminal X. The machine calls ALL(*)

prediction function adaptivePredict. If the call suc-
ceeds, returning a right-hand side γ for X, the machine
pushes a new frame containing γ onto the suffix stack
and an empty frame onto the prefix stack.
In Figure 2, the transition from (σ0) to (σ1) is a push
operation. The top stack nonterminal is S, and a call
to adaptivePredict reveals that Ad is the only viable
right-hand side for S, so the machine pushes Ad onto
the suffix stack.

• return: σ is in a return configuration when the top
suffix frame is empty and the frame below contains
a head nonterminal X. (We refer to the frame below
as the “caller frame” and X as an “open nonterminal.”)
The machine pops the top prefix frame [α , f ] and top
suffix frame, creates a new parse tree Node(X , f ), and
stores it on the prefix stack.
In Figure 2, the transition from (σ5) to (σ6) is a return
operation. The top suffix frame is empty, the top prefix
frame contains Leaf(b), and the open nonterminal is
A, so the machine stores Node(A, Leaf(b)) in the new
top frame of the prefix stack.

These operations can fail in a way that indicates an invalid
input word—e.g., when the top stack terminal does not match
the next token in a consume operation. They can also fail
in a way that indicates an inconsistent machine state—e.g.,
when the caller frame does not contain an open nonterminal
in a return operation. We refer to these two types of failures
as rejections and errors, respectively.

The step function also detects when σ is in a final configu-
ration: i.e., when there are no more stack symbols to process
or tokens to consume, and the prefix stack contains a single
frame holding a single tree. This tree is the parse tree for
the start symbol and input word. In this case, step simply
returns the final tree.

3.4 Prediction Mechanism
The distinguishing feature of ALL(*) is its prediction algo-
rithm, adaptivePredict. The original presentation of the al-
gorithm is heavily imperative and has a subtle termination
argument; these features make the problem of implementing
it in Coq (let alone verifying it!) a challenging one.

CoStar invokes adaptivePredict when the top stack sym-
bol is a nonterminal X (we call X a “decision nonterminal”).
The resulting prediction determines which grammar right-
hand side for X the machine pushes onto the suffix stack.

The adaptivePredict algorithm is really a combination of
two different prediction strategies: LL and strong LL (SLL).
Both strategies attempt to choose a right-hand side for X
by simulating the parser’s behavior in a nondeterministic
fashion. The high-level difference is that LL is a slower and
precise simulation, while SLL is faster and imprecise. LL
identifies all and only the viable right-hand sides, while SLL
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Basic definitions

Terminals a,b ∈ T

Nonterminals X ,Y ∈ N

Symbols s ::= a | X

Sentential Forms α , β,γ ::= • | sβ

Grammars G ::= • | X → γ , G

Literals l ∈ string

Tokens t ::= (a, l)

Words w ::= ϵ | tw

Trees v ::= Leaf(t) | Node(X , f )

Forests f ::= • | v, f

CoStar definitions

Prefix Stacks Φ ::= • | [α , f ]Φ

Suffix Stacks Ψ ::= • | [β]Ψ

Subparsers θ ::= (γ ,Ψ)

DFA States q ::= • | θ ,q

DFAs ∆ ::= • | (q, a) 7→ q,∆

Machine States σ ∈ Φ × Ψ × ∆ ×w × S(N) × B

Errors e ::= InvalidState | LeftRecursive(X )

Predictions p ::= UniqueP(γ ) | AmbigP(γ ) | RejectP | ErrorP(e)

Step Results r ::= AcceptS(v) | RejectS | ErrorS(e) | ContS(σ )

Parse Results R ::= Unique(v) | Ambig(v) | Reject | Error(e)

Figure 1. Core definitions and notations used throughout this paper. We write S(A) to denote finite sets with elements of type
A. For inductively defined types that have an empty value •, we omit • when representing non-empty values. For example, we
write [α , f ] instead of [α , f ]•. We often refer to tokens only by their terminal component and omit their literal component.
For example, we write Leaf((Int, “42”)) as Leaf(Int) when only the terminal symbol is relevant to the discussion.
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Figure 2. Trace of the CoStar stack machine’s execution on a simple grammar and token sequence. Each point in the
trace depicts the state of the machine’s prefix stack, suffix stack, remaining tokens (represented as terminals to simplify the
presentation), and visited nonterminals. For example, at state (σ0), the prefix stack has a single empty frame, the suffix stack
has a single frame containing start symbol S, the token sequence is abd, and the set of visited nonterminals is {} (the empty
set). For compactness, we do not show the processed symbols or the DFA cache. We also do not show the uniqueness flag
because it remains true throughout the parse (i.e., the derivation is unambiguous).

may identify additional right-hand sides that LL rules out;
in this sense, SLL is an overapproximation of LL.
The tradeoff is that SLL is faster; it caches simulation

steps in a DFA, and uses this cache to avoid recomputing
steps. For this reason, adaptivePredict initially tries to make
a prediction in SLL mode, and fails over to LL mode only
when it detects that the SLL result may be unsound (a case
that we describe in more detail below). This failover behavior
ensures that the overall prediction algorithm is sound.

CoStar LL and SLL predictions have the same type, but a
prediction’s meaning can differ based on the mode that pro-
duced it. LL predictions have the following interpretations:

• UniqueP(γ ):γ is the only right-hand side that may lead
to a successful parse.

• AmbigP(γ ): γ leads to a successful parse, as does at
least one other right-hand side γ ′ , γ . This result
indicates that the input has at least two distinct parse
trees—i.e., that the grammar is ambiguous.

• RejectP: No right-hand side leads to a successful parse.
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• ErrorP(e): The prediction mechanism reached an in-
consistent internal state. As with the top-level stack
machine, we guarantee that this case does not occur
for non-left-recursive grammars.

SLL also returns one of the four results listed above, but an
AmbigP(γ ) result has a different interpretation in SLL mode.
This result indicates that SLL identified multiple right-hand
sides {γ ,γ ′, . . . } as viable; because SLL overapproximates
LL, it is possible that LL mode would have ruled out γ and
marked only γ ′ as viable. Therefore, prediction must recom-
mence in LLmode to prevent the parser from taking a “wrong
turn” by pushing γ onto the stack.

3.5 Is It Really ALL(*)?
ALL(*) as originally presented by Parr et al. [30], and as im-
plemented in ANTLR, has an imperative flavor. Adapting it to
a total functional language like Gallina necessarily involves
some creative license. ALL(*) is also a complex algorithm,
and we make several simplifications to keep the verifica-
tion tractable. CoStar differs from the original published
description of ALL(*) in the following ways.
Original ALL(*) operates on a language representation

called an augmented transition network (ATN) [35], while
CoStar operates directly on a CFG. This difference is minor,
because an ATN is merely a graph representation of a CFG.
Original ALL(*) uses a graph-structured stack (GSS) [33]

as a compact representation of subparsers that share some
of their state, whereas the current version of CoStar does
not. This difference is irrelevant to the extensional behavior
or correctness of CoStar, but it means that our tool may be
less space-efficient than ANTLR in practice.
Original ALL(*) prediction attempts to detect ambiguity

early by checking for “conflicting configurations”: subparsers
with different right-hand sides that are guaranteed to per-
form the same steps. In contrast, CoStar only reports ambi-
guity when subparsers for different right-hand sides advance
to the end of the input. As a result, we do not expect CoStar
to be performant on ambiguous grammars. In our view, this
limitation is not a serious one. Parr et al. [30] assert that “for
computer languages, ambiguity is almost always an error”
(i.e., a grammar design error); we believe that this statement
holds especially true in high-assurance settings that require
verified parsing. CoStar’s tolerance of ambiguity is mainly
for grammar development and debugging purposes; it as-
sists users with the process of testing unfinished grammars,
detecting ambiguities, and removing them.

In original ALL(*), when an SLL subparser stack is empty,
the subparser must simulate a return to all possible caller
frames (this behavior is what makes SLL an overapproxi-
mation of LL). In contrast, when a CoStar SLL subparser
reaches this case, it simulates a return to the frames in a
stable state that are “closure-reachable” (i.e., reachable via
push and return operations) from all possible caller frames.

These “stable return” frames are computed statically from the
grammar, which keeps the SLL termination proof tractable.

Despite these differences, we believe that CoStar is largely
faithful to the published description of ALL(*). It is compat-
ible with arbitrary non-left-recursive grammars, it makes
predictions by launching subparsers that nondeterministi-
cally simulate the parser’s behavior, and it caches grammar
information to boost performance.

4 Termination
One of the primary challenges of implementing CoStar was
proving that the parser terminates on all inputs. Gallina, the
functional programming language embedded within Coq, is
total—all recursive functions must terminate provably. This
restriction is necessary for the soundness of Coq’s under-
lying logic. Coq can automatically confirm termination of
many functions that meet certain syntactic criteria. However,
several CoStar components have termination arguments
that are too subtle for Coq’s termination checker to infer, so
we must resort to clever means of convincing the checker
that the parser always terminates.
In this section, we outline our solution to the problem

of writing a provably terminating definition of multistep,
the main stack machine loop. The termination argument for
multistep is too complex for Coq to infer because it depends
on several components of the machine state.

4.1 Handling Left Recursion
Like many top-down parsing algorithms, ALL(*) is incom-
patible with left-recursive grammars; left recursion has the
potential to cause non-termination. In practice, ANTLR is
able to avoid most instances of this problem by rewriting
the grammar to eliminate common forms of left recursion
[30]. We leave the task of verifying such grammar-rewriting
steps for future work and adopt a simpler approach: CoStar
accepts an arbitrary grammar, but it uses a provably correct
scheme for detecting left recursion dynamically that was
presented by Lasser et al. [22].

In this scheme, the machine state includes a set of visited
nonterminals: the nonterminals that have been opened but
not fully processed since the machine last consumed a token.
In Figure 2, for example, the initial set of visited nonterminals
is empty. The transition from (σ0) to (σ1) is a push operation
in which S becomes an open nonterminal, so the visited set
at (σ1) is {S}. After the push operation from (σ1) to (σ2),
the visited set is {S,A} because S and A are both open, and
neither has been fully processed. The transition from (σ2) to
(σ3) is a consume operation, which empties the visited set.
CoStar’s dynamic left recursion detection works as fol-

lows: before the step function performs a push operation,
it checks whether the top stack nonterminal appears in the
visited set; a “yes” answer indicates a left-recursive loop in
the grammar. In this case, the machine halts and returns
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an error value. In Section 5.4, we prove that such an error
case never arises when the parser is applied to a non-left-
recursive grammar.

4.2 Identifying a Well-Founded Measure
One way to convince Coq that a recursive function termi-
nates is to identify a well-founded measure. Such a measure
is a mapping from one or more function parameters to a
value that, on each recursive call, decreases with respect to
some well-founded “less than” relation.2

However, evenwith dynamic left-recursion detection, there
is still no obvious candidate for a multistep decreasing mea-
sure. Figure 2 illustrates the way in which the parser tracks
visited nonterminals. The number of remaining tokens de-
creases on some but not all steps, and the visited set grows
and shrinks, as does the height of the stacks. Push operations
in particular pose a problem; the number of tokens remains
constant, the number of visited nonterminals increases by
one, the stack heights increase by one, and the total number
of stack symbols can increase as well.

The well-founded measure for multistep that we identify
is a triple of natural numbers with the following compo-
nents: (1) the number of remaining tokens; (2) a stackScore
value (described in Section 4.3) computed from the visited
set and suffix stack; and (3) the height of the suffix stack. The
well-founded relation is the standard lexicographic order on
triples of natural numbers; we write <3 for this relation.
This measure enables us to write a provably terminating

definition of multistep via the following Coq idiom:
1. Define a function meas : σ → N × N × N that maps a

parser state to the measure described above.
2. Add a proof of the measure’s accessibility3 in <3 as a

parameter to multistep (its type becomes dependent).
We write Acc<3 (meas(σ )) for this parameter.

3. Prove that each parser step preserves the measure’s ac-
cessibility (Lemma 4.1). Thanks to the Curry-Howard
Isomorphism, we can view this lemma as a function
from a proof term Acc<3 (meas(σ )) to a smaller term
Acc<3 (meas(σ ′)). The accessibility proof thus becomes
multistep’s structurally decreasing parameter.

Lemma4.1 (Preservation of Acc<3 ). If Acc<3 (meas(σ )) and
σ { σ ′, then Acc<3 (meas(σ ′)).

Proof. The Coq Standard Library includes an inductive def-
inition of accessibility, as well as a handy Acc_inv lemma.
Given a relation <, a proof that element x is accessible in <,
and a proof that y < x , Acc_inv produces a smaller proof
term showing that y is accessible in <. We need only show
that each machine step causes the measure to decrease with
respect to <3 (Lemma 4.2). □
2A well-founded relation is a relation with no infinite decreasing chains.
For example, the < relation on N is well-founded, because a decreasing
chain from any n ∈ N must eventually end at 0.
3An element x is accessible in < if every element y < x is also accessible.

Lemma 4.2 (Steps Decrease Measure). If σ { σ ′, then
meas(σ ′) <3 meas(σ ).

Proof. By cases on the shape of σ .

• consume case: If σ is in a consume configuration (i.e.,
if the step is a consume operation), the number of
tokens decreases by one.

• push case: In a push operation, the number of to-
kens remains constant, and the stack score decreases
(Lemma 4.3).

• return case: In a return operation, the number of to-
kens remains constant, the stack score either (a) de-
creases or (b) remains constant (Lemma 4.4), and the
stack height decreases. Therefore, the overall triple
decreases due to a decrease in (a) its second position
or (b) its third position.

□

4.3 The stackScore Function
The interesting piece of the measure defined above is the
stackScore function. The intuition behind this function is
that processing a symbol near the bottom of the suffix stack
is “worth more” than processing a symbol near the top in
terms of making progress towards termination. When the
parser pushes a new frame onto the stack, it must process the
pushed symbolsγ and their children before it can process the
newly open nonterminal X. Therefore, processing γ requires
fewer steps than fully processing X.

We make this idea concrete by assigning weights to suffix
stack symbols, such that symbols in lower frames receive
higher weights. We then compute a numeric score for the
entire stack in terms of the weights. Through the use of a
carefully chosen exponent value, our formula ensures that
the overall stack score decreases on push operations, and
decreases or remains constant on return operations. Details
of the stackScore formula are as follows:

The frameScore function assigns a score to a single suffix
stack frameψ in terms of the number of unprocessed sym-
bols in ψ , a base b, and an exponent e (we explain how to
instantiate b and e below):

frameScore(ψ ,b, e) = be ∗ (# unprocessed symbols inψ )

The stackScore′ function sums the frameScore values for a
list of frames Ψ, incrementing the exponent by one each time
it traverses to a lower frame:

stackScore
′(Ψ,b, e) =


0 if Ψ = •

frameScore(ψ ,b, e) +
stackScore

′(Ψ′,b, e + 1) if Ψ = ψΨ′

Finally, the stackScore function calls stackScore′ with a base
of (1 + the max length of a grammar right-hand side), and
an initial exponent of |U \ V |, where U is the universe of
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grammar left-hand sides and V is the visited set:

stackScore(G,Ψ,V ) =

stackScore
′( Ψ, 1 +maxRhsLen(G), |U \V | )

These initial base and exponent values ensure that the stack
score decreases on a push operation, and that it decreases or
stays constant on a return operation:

Lemma 4.3. If the machine pushes from Ψ and V to Ψ′ and
V ′, then stackScore(G,Ψ′,V ′) < stackScore(G,Ψ,V ).

Lemma 4.4. If the machine returns from Ψ and V to Ψ′ and
V ′, then stackScore(G,Ψ′,V ′) ≤ stackScore(G,Ψ,V ).

5 Correctness Properties
A novel feature of our correctness analysis is that it en-
compasses ambiguity detection. We want to ensure that the
parser correctly labels trees as unique or ambiguous.4 There-
fore, for both soundness and completeness, we prove two
theorems: one for unique derivations, and one for ambigu-
ous derivations. Concretely, we prove that CoStar has the
following correctness properties:

1. (Soundness, unique derivations): If the parser returns a
tree v labeled as Unique, then v is the sole parse tree
for the input.

2. (Soundness, ambiguous derivations): If the parser re-
turns a tree v labeled as Ambig, then v is one of multi-
ple distinct parse trees for the input.

3. (Error-free termination): The parser terminates without
returning an error value, whether the input word is
valid or invalid.

4. (Completeness, unique derivations): Given an inputword
with a unique parse tree v , the parser returns v and
labels it as Unique.

5. (Completeness, ambiguous derivations): Given an in-
put word with multiple distinct parse trees, the parser
returns one of these trees and labels it as Ambig.

Each correctness property assumes that the parser is applied
to a non-left-recursive grammar G. Together, these prop-
erties establish that the parser is a decision procedure for
membership in L(G). In the remainder of this section, we
discuss these properties and the notable features of their
proofs in more detail.

5.1 Correctness Specification
The CoStar correctness specification is a standard gram-
matical derivation relation over a grammar symbol s , a word
w , and a tree v (Figure 3). The relation has the judgment
form s

v
−→ w (“Symbol s derives wordw , producing tree v”).

This symbol derivation relation is mutually inductive with a
second relation (also in Figure 3) for sentential forms—i.e.,
4Strictly speaking, a tree cannot be ambiguous—rather, a word is ambiguous
when it has more than one parse tree. For brevity, we sometimes refer to a
tree for an ambiguous word as an “ambiguous tree.”

DerTerminal

a
Leaf(a,l )
−−−−−−→ (a, l)

DerNonterminal

X → γ ∈ G γ
f
−→ w

X
Node(X ,f )
−−−−−−−−→ w

DerNil

•
•
−→ ϵ

DerCons

s
v
−→ w1 β

f
−→ w2

sβ
v,f
−−−→ w1w2

Figure 3. Derivation relations for symbols and sentential
forms with respect to a grammar G.

grammar right-hand sides. This second relation has the judg-

ment form γ
f
−→ w (“Symbols γ derive word w , producing

forest f ”). Parser soundness and completeness are defined
in terms of these two relations.
Some of our proofs rely on two-place variants of these

relations that leave the tree or forest unspecified when it
is unknown or irrelevant. For example, we write s → w to
mean, “Symbol s recognizes wordw .”

5.2 Soundness for Unique Derivations
Theorem 5.1 (Soundness, unique derivations). If parse ap-
plied to non-left-recursive grammar G, nonterminal S , and
wordw returns a tree v labeled as Unique, then v is the sole
correct parse tree rooted at S forw .

The proof of this theorem relies on a more general lemma
about the parser’s underlyingmultistep function. This lemma
exemplifies the invariant-based style of verification that we
use throughout the CoStar development. Its salient feature
is its reliance on two invariants of the parser state (described
below). The proof is by induction on the well-founded mea-
sure for multistep (Section 4.2). In the base case, the invari-
ants together prove the soundness of multistep directly, and
in the inductive case, we need only prove that the step func-
tion preserves the invariants. In Sections 5.2.1 and 5.2.2, we
describe the two invariants in more detail.

5.2.1 A Parser Stack Well-Formedness Invariant
The StacksWf_I invariant (Figure 4) captures two well-
formedness properties of the parser’s prefix and suffix stacks:

• The bottom frames hold only the start symbol. It ap-
pears in the bottom suffix frame during initial and
intermediate machine states, and in the prefix frame
in the machine’s final state.

• A pair of upper frames (i.e., a prefix frame and suf-
fix frame at the same level in their respective stacks)
hold a complete grammar right-hand side for the open
nonterminal in the caller suffix frame.

Lemma 5.2 (Preservation of Stack Well-Formedness). If
StacksWf_I(σ ) and σ { σ ′, then StacksWf_I(σ ′).
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Φ ≈G Ψ
WfInit

[•, •] ≈G [S]

WfFinal

[S,v] ≈G [•]

WfUpper
[α1, f1]Φ ≈G [Xβ1]Ψ X → α2β2 ∈ G

[α2, f2][α1, f1]Φ ≈G [β2][Xβ1]Ψ

StacksWf_I(σ )
Φ ≈G Ψ

StacksWf_I(Φ,Ψ, _, _, _, _)

Figure 4. A well-formedness invariant for the prefix stack
and suffix stack components of a machine state σ .

Proof. By cases on the shape of the initial machine state σ .
The case where σ is in a push configuration is the most
involved. Push operations involve calls to the prediction
mechanism, so we need a lemma stating that if a call to adap-
tivePredict for nonterminal X returns some list of symbols
γ , then X → γ ∈ G . There are two ways for adaptivePredict
to return γ—it can mark the right-hand side as a unique al-
ternative or an ambiguous one—so we need to show that γ
is a right-hand side for X in either case. □

5.2.2 An Invariant for Unique Partial Derivations
The UniqeDer_I inductive invariant (Figure 5) is the main
invariant that we use to prove the parser sound for unique
derivations. This invariant says that when themachine state’s
unique flag is true, the processed stack symbols and trees in
each prefix frame comprise a unique partial parse tree for a
prefixw1 of the initial parser inputw .
Its rules have the following meanings:
• The UniqeBot rule says that the processed symbols
α in the bottom prefix frame derive a prefixw1 ofw . It
also says that there is no other way to partitionw into
a different prefix and suffixw ′

1w
′
2 such that α derives

w ′
1 and the unprocessed symbols β derivew ′

2.
• The UniqeUpper rule captures the same properties
as UniqeBot for upper frames. It also says that “all
stack pushes are unique”—i.e., whenever X is an open
nonterminal and the prefix and suffix frames above it
contain α2 and β2 (respectively), α2β2 is the only right-
hand side for X that might lead to a successful parse.
(We do not knowwhether α2β2 will succeed—only that
no other right-hand side will.)

UniqeDer_I(σ ,w) lifts this invariant to machine states.

Lemma 5.3 (Preservation of Unique Partial Derivations). If
UniqeDer_I(σ ,w) and σ { σ ′, then UniqeDer_I(σ ′,w).

Proof. By cases on the shape of σ , assuming StacksWf_I(σ ).
(The well-formedness invariant plays a supporting role in

many of these proofs; we will omit it when it is irrelevant to
the discussion.) There are two interesting cases:

• return: A return operation involves moving the forest
f in the top prefix frame to the frame below. There, it
becomes the subtrees of the caller nonterminal X that
is reduced during the return (for an example, see the
transition between states (σ5) and (σ6) in Figure 2). To
ensure that the partial tree remains unique after this
operation, the invariant needs to “remember” that f
was produced by a unique viable right-hand side γ for
X—in other words, when γ was pushed onto the stack
earlier in the machine’s execution, no other right-hand
side for X would have succeeded. The “unique pushes”
premise in the UniqeUpper rule records exactly this
information.

• push: Here, we must show that a push operation pre-
serves the “unique pushes” property that we relied on
in the previous case. We accomplish this task with a
key fact about the ALL(*) prediction mechanism (pre-
sented below as Lemma 5.4): if adaptivePredict returns
a right-hand side γ labeled as Unique for nonterminal
X, then γ is the sole right-hand side for X that may
lead to a successful derivation.

□

Lemma5.4. Assume that adaptivePredict returnsUniqueP(γ )
for nonterminal X. Assume also that some right-hand side
γ ′, together with the unprocessed stack symbols, recognizes
the remaining token sequence. Then γ ′ = γ .

Proof. If adaptivePredict returns UniqueP(γ ), then either (1)
SLL prediction found a single viable alternative, or (2) SLL
prediction failed over to LL prediction, which found a single
viable alternative. In case (1), we show that SLL prediction
is an overapproximation of LL prediction, and that LL pre-
diction therefore would have reached the same decision. We
can now use Lemma 5.5 (below) about the correctness of LL
prediction. In case (2), we can use Lemma 5.5 directly. □

Lemma5.5. Assume that (1) LL prediction returnsUniqueP(γ )
for nonterminal X and token sequence w, and (2) some right-
hand side γ ′, together with the unprocessed stack symbols,
recognizesw . Then γ ′ = γ .

Proof. LL subparsers advance in lockstep until all remaining
subparsers carry the same prediction. Therefore, by assump-
tion (1),w can be split into a prefixw1 and suffixw2 such that
all subparsers that advance throughw1 carry the prediction
γ . We call this set of subparsers Θ.

From assumption (2), there exists an initial subparser θ ′
carrying prediction γ ′ that is capable of advancing to the end
of w = w1w2. This subparser must advance through prefix
w1. Therefore, θ ′ ∈ Θ, and γ ′ = γ .

The interesting aspect of this proof is that LL prediction
does not advance to the end of the token sequence by default.
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⟨Φ,Ψ⟩ ⇀U w | w

UniqeBot

α
f
−→ w1

(∀w ′
1 w

′
2 f ′. w ′

1w
′
2 = w1w2 ∧ α

f ′
−→ w ′

1 ∧ β → w ′
2 =⇒ w ′

1 = w1 ∧w ′
2 = w2 ∧ f ′ = f )

⟨[α , f ], [β]⟩ ⇀U w1 | w2

UniqeUpper

α2
f2
−→ w2

(∀w ′
2 w

′
3 f ′2 . w

′
2w

′
3 = w2w3 ∧ α2

f ′2
−→ w ′

2 ∧ β2β1 ++ unproc(Ψ) → w ′
3 =⇒ w ′

2 = w2 ∧w ′
3 = w3 ∧ f ′2 = f2)

(∀γ . X → γ ∈ G ∧ γ β1 ++ unproc(Ψ) → w2w3 =⇒ γ = α2β2)
⟨[α1, f1]Φ, [Xβ1]Ψ⟩ ⇀U w1 | w2w3

⟨[α2, f2][α1, f1]Φ, [β2][Xβ1]Ψ⟩ ⇀U w1w2 | w3

UniqeDer_I(σ ,w)
UniqeDer_I((_, _, _, _, _, false),w)

⟨Φ,Ψ⟩ ⇀U w1 | w2

UniqeDer_I((Φ,Ψ, _,w2, _, true),w1w2)

Figure 5. The UniqeDer_I invariant states that when a machine state’s unique flag is true, the prefix stack holds a unique
partial parse tree for the tokens that have been consumed so far. A judgment ⟨Φ,Ψ⟩ ⇀U w1 | w2 can be read, “Φ and Ψ hold a
unique partial derivation for prefixw1 of input wordw = w1w2.” The unproc() function extracts the unprocessed symbols from
a suffix stack and flattens them into a list.

For efficiency, it examines only as much of the sequence as is
necessary to reach a decision—in this case, theminimal prefix
isw1. Therefore, to formalize the notion that θ ′ is “capable
of advancing to the end” of the sequence, we need to reason
counterfactually—i.e., specify the subparser’s behavior if it
were allowed to advance past the point in the token sequence
where prediction halts. To perform this kind of reasoning,
we define a relational specification for the operations that
a subparser performs, and use it to prove that θ ′ is capable
of consuming the entire input through a sequence of such
operations, even though the actual computation halts after
examiningw1. □

5.3 Soundness for Ambiguous Derivations
Theorem 5.6 (Soundness, ambiguous derivations). If parse
applied to non-left-recursive grammarG , nonterminal S , and
wordw returns a tree v labeled as Ambig, then v is a correct
parse tree rooted at S forw , and there exists another correct
tree v ′ , v .

Like Theorem 5.1, this theorem relies on a more general
lemma about multistep, with a proof by induction on the
multistep well-founded measure. The lemma is based on a
machine state invariant called AmbigDer_I. This inductive
invariant says that when the unique flag is false, the prefix
and suffix stacks hold an ambiguous partial derivation. We
only give the intuition behind each invariant rule here; the
precise definitions appear in the formal development.

A partial derivation can be ambiguous in three ways:

• (AmbigPush): The top-level pair of stack frames con-
tains a right-hand sideγ for caller nonterminalX when
another right-hand side γ ′ , γ also would have led to
a successful parse. The alternative γ ′ is in effect the
“road not taken.”

• (AmbigForest): The processed symbols in the top pre-
fix frame produce multiple forests for (possibly differ-
ent) portions of the original input word; only one of
these forests appears in the frame.

• (AmbigTail): The ambiguity appears in a lower pair
of stack frames.

Figure 6 illustrates the way in which the stack machine pre-
serves this invariant. In machine state (σ0), the invariant
holds because the state’s unique flag is true. The transition
from (σ0) to (σ1) is a push in which adaptivePredict detects
ambiguity. The machine pushes right-hand side X onto the
stack, but pushing Y would have worked just as well; there-
fore, the AmbigPush rule applies. The next push from (σ1)
to (σ2) is unambiguous, but the overall derivation is still
ambiguous; the AmbigTail rule shifts the focus to the stack
tails, where the AmbigPush rule still holds. In the final state
(σ4), the bottom prefix frame holds a correct parse tree for
the input word, but a different tree—one with Y as the middle
node instead of X—would also be correct. The AmbigForest
case of the invariant captures this property.

Lemma5.7 (Preservation of Ambiguous Partial Derivations).
If AmbigDer_I(σ ,w) and σ { σ ′, then AmbigDer_I(σ ′,w).
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Figure 6.Machine execution trace on a simple ambiguous
grammar and input word. The cases of the AmbigDer_I
invariant that hold for each machine state appear above the
state in pink. We replace the visited sets from Figure 2 with
unique flags (T/F) because they are more relevant here.

Proof. By cases on the shape of σ . An interesting difference
between the proof of Lemma 5.3 and this one is that the
UniqeDer_I consequent is true of the initial machine state
(the empty partial derivation is unique), but AmbigDer_I
is only “trivially” true at the start of parsing, because its
“unique = false” antecedent is false. The unique flag is initially
true and only becomes false if the prediction mechanism
detects ambiguity midway through the parser’s execution.
Therefore, the tricky case in the proof of Lemma 5.7 is

the “ambiguous push” case, where we have to prove that
the partial derivation is ambiguous at the point when the
flag switches from true to false, even though no prior ambi-
guity has been detected. We handle this case with a lemma
about adaptivePredict: if the function returns AmbigP(γ )for
nonterminal X, then both γ and a second right-hand side
γ ′ , γ for X lead to a successful derivation. This situation
corresponds to the AmbigPush case of the invariant. □

5.4 Error-Free Termination
Theorem5.8. Given a non-left-recursive grammar, the parser
never returns an Error value.

This property is used in the completeness proofs to show
that the parser never returns an error for valid words. Along
with the soundness theorems, it also guarantees that the
parser returns a Reject value for invalid words, rather than
an error that does not clearly indicate acceptance or rejection.

Parser errors fall into the following categories:
1. InvalidState errors indicate amalformedmachine state—

e.g., the prefix and suffix stacks are different heights.
2. LeftRecursive(X ) errors indicate that the parser has

detected a left-recursive grammar nonterminal X.
3. Errors can arisewithin the predictionmechanism. Since

prediction simulates parsing, prediction errors fall into

the two categories above: a subparser can reach an in-
valid state (category 1) or detect left recursion dynami-
cally (category 2). This overlap enables us to streamline
the verification work by factoring out some lemmata
and using them to rule out both top-level parsing er-
rors and prediction errors.

The StacksWf_I invariant is sufficient to rule out Invalid-
State parser errors. The parser returns such an error when it
detects that the prefix and suffix stacks are different heights,
that the bottom prefix frame contains more than one tree,
or that there is no caller nonterminal to return to during
a return operation. The well-formedness property ensures
that these cases never occur. A similar invariant rules out
InvalidState errors in the prediction mechanism. This lat-
ter invariant describes only the well-formedness of a suffix
stack, since subparsers do not build parse trees and therefore
do not use prefix stacks.
The proof that left recursion errors do not arise is more

interesting. Below, we briefly present this proof as it applies
to the stack machine. The corresponding proof for the pre-
diction mechanism involves similar reasoning, and it relies
on the same key invariant (thus avoiding redundancy!).

5.4.1 Ruling Out Left Recursion Errors
Lemma 5.9. Given a non-left-recursive grammar G, the
parser never raises an error that identifies nonterminal X as
left-recursive in G.

Proof. We adapt an approach that Lasser et al. [22] use to rule
out similar errors in an LL(1) parser. The approach involves
proving that the dynamic mechanism for detecting left re-
cursion is sound—i.e., if the parser returns LeftRecursive(X ),
then nonterminal X really is left-recursive in the grammar
(Lemma 5.10 below). With a little first-order reasoning, it is
then easy to show that a non-left-recursive grammar and a
sound detection mechanism together entail the absence of
left recursion errors. □

5.4.2 Soundness of Left-Recursion Detection
Lemma 5.10. If the parser applied to G returns LeftRecur-
sive(X ), then nonterminal X is left-recursive in G.

Proof. The proof centers on an invariant that relates the
shape of the parser’s suffix stack to the shape of the gram-
mar, via the visited set V . It says, roughly, that every visited
nonterminal X ∈ V is an open nonterminal in a caller suf-
fix frame, and that there is a nullable path from X to the
top stack symbol.5 In Figure 2 at state (σ2), for example,
V = {S,A}; both S and A are open nonterminals in lower
suffix frames, and there is a nullable path S → A → a be-
cause the sequence of transitions (σ0) → (σ1) → (σ2) did not
5A nullable path is a path between two positions in the grammar that does
not include any terminals. It corresponds to a sequence of parser operations
that does not consume any tokens. Lasser et al. [22] formally define left
recursion as a special case of a nullable path.
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consume any tokens. The parser returns LeftRecursive(X )
when the top stack symbol is a visited nonterminal X—per
the invariant, when there is a nullable path from X to X,
which is exactly the definition of left recursion! □

5.5 Completeness
Like the two soundness theorems, the two CoStar complete-
ness theorems cover unique and ambiguous derivations:

Theorem 5.11 (Completeness, unique derivations). If word
w has a unique parse treev rooted at nonterminal S, then the
parser applied to S and w produces v and labels it as Unique.

Theorem 5.12 (Completeness, ambiguous derivations). If
word w is ambiguous (it has two correct S-rooted parse trees
v and v ′, where v , v ′), then the parser applied to S and w
returns a correct tree v ′′ and labels it as Ambig.

Theorem 5.12 reflects the ALL(*) policy towards ambiguity,
which is to treat it as a likely grammar error. In practice,
designers of grammars for programming languages and data
formats do not want the parser to return every possible tree
for an ambiguous input, which may be expensive. Instead,
they expect the parser to (1) return a correct tree, and (2)
notify them that the input is ambiguous. These are exactly
the guarantees that CoStar provides for ambiguous inputs.
To prove Theorems 5.11 and 5.12, it suffices to prove the

weaker statement that when a correct parse tree v exists,
the parser produces any tree v ′ (Lemma 5.13 below). We
can then marshal our parser soundness theorems and a little
first-order reasoning to show that v ′ is a correct tree, and
that the parser correctly labels it as Unique (Theorem 5.11)
or Ambig (Theorem 5.12). In the remainder of this section,
we focus on this more general version of completeness.

Lemma 5.13 (Completeness, general). If a correct S-rooted
tree v exists for word w, then the parser returns a tree v ′.

The proof of Lemma 5.13 follows this informal reasoning:
if the parser does not (1) return errors or (2) reject valid
input words, then it is complete. Theorem 5.8, our error-free
termination theorem, rules out case (1), so the new challenge
is to rule out case (2). As before, we proceed by introducing an
invariant over the machine state. The UnprocRecognize_I
invariant (Figure 7) says that the unprocessed symbols on the
suffix stack recognize the remaining token sequence. This
invariant holds at the start of parsing: if a correct S-rooted
tree exists for the input word, then S recognizes the input
word. It is also easy to show that when this invariant holds,
the parser never rejects its input as invalid. The tricky part
is showing that parser steps preserve the invariant:

Lemma 5.14. If UnprocRecognize_I(σ ) and σ { σ ′, then
UnprocRecognize_I(σ ′).

UnprocRecognize_I(σ )

unproc(Ψ) → w

UnprocRecognize_I(_,Ψ, _,w, _, _)

Figure 7. A machine state invariant for proving complete-
ness: the unprocessed suffix stack symbols recognize the
remaining suffix of the input word.

Proof. By cases on the shape of σ . The difficulty stems from
the two “push” cases, which correspond to unique and am-
biguous predictions, respectively. In these cases, we have to
show that the prediction mechanism never causes the parser
to take a “wrong turn”; i.e., adaptivePredict never returns a
right-hand side for top stack symbol X that causes the parser
to reject the input when some other right-hand side would
have led to a successful parse.
In the “unique prediction” case, adaptivePredict returns

UniqueP(γ ), and the invariant over the pre-push machine
state tells us that some right-hand side γ ′ for X leads to a
successful parse. How do we show that adaptivePredict has
not led the parser astray by selecting γ ? We reuse Lemma
5.4, which says that if adaptivePredict returns UniqueP(γ ),
then γ is the sole right-hand side for X that may lead to
a successful parse. Therefore, the adaptivePredict result γ
must be equal to γ ′.
In the “ambiguous prediction” case, adaptivePredict re-

turns AmbigP(γ ), which means that γ (as well as other right-
hand sides for X ) caused a subparser θ to reach the end of
the remaining token sequence. This case is tricky because it
involves “rewinding” θ , using a fact about its final state (that
it recognized the entire sequence) to prove a fact about its ini-
tial state (that it is capable of recognizing the entire sequence
at the start of prediction). We perform this “backward” rea-
soning by proving an equivalence between the prediction
algorithm and a relational specification. The specification
makes it easier to run prediction steps in reverse; it supports
reasoning about the state of a subparser before a prediction
step based on its state after the step. □

6 Performance Evaluation
To evaluate CoStar’s performance, we extracted the tool
to OCaml source code and measured its execution time on
four benchmarks, with the goal of observing its asymptotic
behavior on grammars for popular programming languages
and data formats. We then measured the execution time of
ANTLR parsers on the same benchmarks to assess CoStar’s
performance relative to ANTLR.

6.1 CoStar Benchmarks
Each CoStar benchmark involved providing the parser with
a grammar for a real-world programming language or data
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Benchmark Grammar Size Data Set Size
|T | |N | |P | # files MB

JSON 11 7 17 25 21
XML 16 22 40 1260 192
DOT 20 44 73 48 19

Python 3 89 287 521 169 4

Figure 8.Measures of grammar size and data set size for the
four CoStar benchmarks. Counts of terminals T , nonter-
minals N , and productions P are taken from the desugared
BNF grammars.

format, and measuring the parser’s execution time on a rep-
resentative data set for that language or format.
ANTLR grammars exist for a wide variety of languages.

To facilitate testing with these existing grammars, we built a
tool that converts a grammar in ANTLR’s input format to the
OCaml data structure that CoStar takes as input. ANTLR
grammars can include EBNF operators (e.g., the Kleene star),
whereas CoStar is parameterized by a BNF grammar. There-
fore, the grammar conversion tool desugars EBNF elements
into equivalent BNF structures, generating fresh nontermi-
nals and adding new productions to the grammar as neces-
sary. These transformations produce a grammar that accepts
the same language as the original one, but we do not prove
this fact. CoStar takes pre-tokenized input, so we also built
a tool that uses an ANTLR grammar to tokenize a data file.

We ran benchmarks based on four languages: JSON, XML,
DOT, and Python 3. Figure 8 provides statistics on the sizes
of the grammars and data sets. We reused the JSON, XML,
and DOT grammars from the original ANTLR performance
evaluation [30] and took the Python 3 grammar from a cen-
tral repository for ANTLR grammars [19]. We also reused
DOT data from the ANTLR evaluation6 and JSON data from
an LL(1) parser performance evaluation [22]. The XML data
is a subset of the Open American National Corpus [28] (a
collection of annotated linguistic data), and the Python 3
data is a portion of the Python 3.6.12 standard library.
To the best of our knowledge, the grammars contain no

ambiguity or left recursion. CoStar does not attempt to
check either grammar property statically, but the tool re-
turns a parse tree labeled as Unique for all files in the bench-
mark data sets, so we can be reasonably confident that the
grammars are unambiguous and left recursion-free.
At least some of the grammars take advantage of ALL(*)

prediction’s expressive power; consider the following rule
from our XML grammar (in ANTLR’s EBNF notation):

elt : '<' Name attribute* '>' content '<' '/' Name '>'

| '<' Name attribute* '/>' ;

6We did not reuse the JSON or XML data sets from the ANTLR evaluation
because each contains a small number of files (four and one, respectively).
Testing CoStar on many files of varying size gave us a clearer picture of
the tool’s asymptotic behavior.

Because of this rule, the grammar is not LL(k) for any k;
prediction must advance through an arbitrary number of
XML attributes before determining which of the two produc-
tions matches the remaining input.

We ran the benchmarks on a laptop with 4 2.5 GHz cores,
7 GB of RAM, and the Ubuntu 16.04 OS. We used OCaml
compiler version 4.11.1+flambda with optimization level -O3.
Plots of our benchmark results appear in Figure 9. Each

point represents the parse time for a single input file, aver-
aged over five trials. Note that the results strongly suggest
linear performance, which is consistent with reported empir-
ical results for ANTLR [30]. We borrowed a technique from
that earlier work to bolster our claim of linear performance
on the benchmarks: each plot includes a least-squares regres-
sion line and a LOWESS curve [4]. LOWESS is a method for
approximating a scatter plot with a smooth curve that is not
constrained to be linear. The close correspondence between
LOWESS curves and regression lines in our results indicates
a linear relationship between input size and parse time.

Differences in CoStar’s performance across benchmarks
are probably a function of grammar size. CoStar makes
heavy use of finite maps and sets that contain grammar
symbols (and data structures composed of grammar symbols).
We used Coq Standard Library implementations of these
collections that are based on AVL trees, for which insertions,
deletions, and lookups require O(logn) comparisons with
respect to the number of possible map keys or set elements.
For larger grammars, the space of keys (or elements) is larger;
as Figure 8 shows, our largest evaluation grammar is Python,
so the fact that our Python benchmark is the slowest in terms
of tokens processed per second does not come as a surprise.
Empirical evidence supports this explanation of perfor-

mance differences across benchmarks. Profiling CoStar on
the Python benchmark reveals that the function compareNT

(which compares nonterminals) accounts for roughly 17%
of execution time, and the five most expensive functions
are all comparisons, together accounting for nearly 50% of
execution time. In contrast, profiling CoStar on the JSON
benchmark shows that compareNT accounts for only 5%
of execution time, and garbage collection, not comparison,
dominates performance.

6.2 Performance Comparison with ANTLR
To assess CoStar’s performance relative to ANTLR, we cre-
ated ANTLR parsers for our four benchmark languages and
measured their execution time on the data sets from the
CoStar evaluation.

We ran the ANTLR parser benchmarks on the test machine
described in Section 6.1. Each benchmark consisted of three
complete passes over the data set. To allow for JIT warm-up,
we discarded the results of the first two passes and recorded
the results of the third pass. Each pass involved running five
parser trials per data point. In each trial, we instantiated an
ANTLR parser and measured its execution time by calling
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Figure 9. Input size vs. CoStar average parse time on four
benchmarks. Unconstrained LOWESS curves coincide with
regression lines, indicating linear-time performance. Curves
were computed on the smallest 99% of files in each bench-
mark for scale, with a LOWESS f -hyperparameter value
of 0.1. Values of f close to 0 produce a more jagged curve;
values close to 1 produce a smoother curve.

System.nanoTime() immediately before and after invoking
the parser on the current data file.

Before each ANTLR parser trial, we used an ANTLR lexer
to pre-tokenize the input so that we could measure ANTLR
parsing time separately from lexing time. This step enables a
meaningful comparison between ANTLR and CoStar, since
the latter tool parses pre-tokenized input.
For each ANTLR parser benchmark described above, we

also ran a corresponding benchmark in which we recorded
lexing times instead of parsing times. These measurements
enable us to compare the performance of an “ANTLR lexer,
ANTLR parser” pairing to that of an “ANTLR lexer, CoStar
parser” pairing. This comparison represents the performance
consequences of replacing an unverified parser with CoStar
in a lexing/parsing pipeline. Note that CoStar is not di-
rectly interoperable with ANTLR lexers at present; we bench-
marked ANTLR lexers for each language, and then combined
the lexing times with ANTLR and CoStar parsing times to
simulate the effect of substituting one parser for another.
Figure 10 shows CoStar’s average slowdown relative to

ANTLR on each benchmark. There are two bars per bench-
mark. The first bar shows CoStar’s slowdown relative to
an ANTLR parser; lexing time is excluded. The second bar
shows the slowdown of an “ANTLR lexer, CoStar parser”
pairing relative to an “ANTLR lexer, ANTLR parser” pairing.
CoStar is roughly 5-11x slower than an ANTLR parser on
the JSON, XML, and DOT benchmarks. The Python results
require a bit more explanation:

First, the ANTLR Python parser’s performance appears to
improve slightly as file size increases (see Figure 11, left side),
so CoStar’s slowdown relative to ANTLR is not consistent
across all data points. We believe that ANTLR exhibits this
behavior because ALL(*)’s dynamic cache optimization pro-
vides a bigger performance boost on large Python files than

JSON XML DOT Python
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Figure 10. CoStar’s average slowdown relative to ANTLR
on each benchmark. Striped blue bars show CoStar’s av-
erage slowdown relative to an ANTLR parser. Dotted or-
ange bars show the average slowdown of an “ANTLR lexer,
CoStar parser” pairing relative to an “ANTLR lexer, ANTLR
parser” pairing. This latter measure represents the cost of re-
placing an unverified parser with CoStar in a lexing/parsing
pipeline. Error bars show standard deviations.
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Figure 11. Benchmark results for the ANTLR Python parser.
The left plot shows that when each benchmark trial involves
a newly instantiated parser with an empty cache, perfor-
mance improves slightly as file size increases. The right plot
shows that when a parser with a pre-warmed cache is used
in the benchmark, this slight nonlinear effect disappears.

on small ones.7 To test this hypothesis, we ran a variation of
the ANTLR Python parsing experiment in which we warmed
up the parser’s cache by parsing many files, and then ran
the standard benchmark with the warmed-up parser. This
approach causes the slight nonlinearity to disappear (see
Figure 11, right side).
Second, the ANTLR Python lexer is slow relative to the

ANTLR Python parser, possibly due to Python’s complex
whitespace and indentation rules. As a result, while CoStar’s
slowdown relative to the ANTLR Python parser is large, the
overall cost of using CoStar in a lexing/parsing pipeline
may be more modest.
7We do not see similar ANTLR behavior on the JSON, XML, and DOT
benchmarks, probably because the grammars for these languages are smaller
than the Python grammar (as Figure 8 shows), so cache warm-up occurs
even on small files. We do not see similar CoStar behavior on the Python
benchmark, either. A likely explanation is that, as Section 3.5 explains,
CoStar caches some grammar information statically, so on small files,
CoStar might have access to a larger cache than ANTLR.
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Note that in these experiments, we ran ANTLR in a con-
figuration that enables as direct a comparison with CoStar
as possible–not a configuration that leads to optimal per-
formance. For example, ANTLR is able to generate parser
source code that is specialized to a particular grammar, but
we chose to run it in “interpreter mode” because CoStar is
an interpreter, not a code generator. In addition, an ANTLR
parser is able to reuse the cache that it built while parsing
previous input in order to improve its performance on new
input. However, in each ANTLR parser trial, we instantiated
a new parser with an empty cache because CoStar does not
currently offer a way to reuse a cache across multiple inputs.

7 Related Work
Several recent works present verified LL(1) parsing tech-
niques. Like ALL(*), LL(1) is a top-down predictive approach
to parsing. Lasser et al. [22] use Coq to verify an LL(1) parser
generator. The tool is based on the classic technique for con-
structing an LL(1) parsing table through static analysis of
a CFG. Edelmann et al. [7] present a derivative-based LL(1)
parsing algorithm, which they verify in Coq and reimple-
ment in a Scala parser combinator framework. Parsing with
derivatives [24] is an elegant formalism that is compatible
with arbitrary CFGs and has cubic worst-case time complex-
ity [1]. Edelmann et al. show that restricting derivative-based
parsing to LL(1) grammars leads to linear-time performance.
The main limitation of these techniques is that they are only
compatible with LL(1) grammars.
Certified versions of bottom-up parsing algorithms exist

as well. Barthwal and Norrish [2] verify SLR parsers with the
HOL4 proof assistant, and Jourdan et al. [18] use Coq to per-
form a posteriori validation of LR(1) parsers produced by an
unverified generator. Neither development includes a proof
of error-free termination on all inputs; the parsers therefore
cannot be viewed as verified decision procedures for lan-
guage membership. One drawback of bottom-up parsing is
that producing informative error messages is difficult enough
to be a research area in its own right [17, 31]. Bottom-up algo-
rithms are also not well-suited for handling non-context-free
extensions to grammars, such as data dependencies [10].

There have been several successful efforts to verify parsers
for general CFGs. General parsing algorithms are designed to
be compatible with ambiguous grammars, and they typically
return all parse trees for a given input. These properties may
be undesirable in a setting where parsing is expected to be
unambiguous and fast. Ridge [32] presents an elegant tech-
nique for constructing a parser for an arbitrary CFG. Using
HOL4, he proves that the technique produces a terminating
and correct parser, even when the grammar is left-recursive.
An implementation that includes an additional memoization
component hasO(n5)worst-case time complexity. Firsov and
Uustalu [8] describe a verified Agda implementation of the

CYK algorithm, which operates on CFGs in Chomsky nor-
mal form (CNF). In subsequent work [9], they verify a CNF
normalization algorithm. The combined result is a verified
parser for arbitrary CFGs. Danielsson [6] presents an Agda
parser combinator library that guarantees termination and
correctness of parsers built with the combinators, and that
accepts many left-recursive parser definitions.

Parsing expression grammars (PEGs) [12] are a language
representation sometimes used in place of CFGs to specify
parsers. Koprowski and Binsztok [20] present a Coq formal
semantics for PEGs and prove the correctness of a PEG in-
terpreter with respect to this semantics. PEG parsers often
employ a memoization technique called packrat parsing [11]
to achieve linear time and space complexity. Wisnesky et al.
[34] and Blaudeau and Shankar [3] use the Ynot and PVS
frameworks, respectively, to verify packrat PEG parsers. The
main drawback of the PEG formalism is that its “ordered
choice” operator hides ambiguities in the language defini-
tion, which can lead to counterintuitive parsing behavior.

8 Conclusions and Future Work
We have presented CoStar, a verified parser based on the
ALL(*) algorithm. CoStar is sound and complete for non-
left-recursive grammars; it produces a correct parse tree for
its input if and only if such a tree exists, and it correctly
labels the tree as unique or ambiguous. Given a non-left-
recursive grammar, the parser terminates without error on
all inputs. We have demonstrated empirically that CoStar
achieves linear-time performance on unambiguous gram-
mars for real-world languages. Below, we discuss several
possible extensions of this work.
The “no left recursion” grammar property that appears

as an assumption in our correctness theorems is decidable.
We plan to implement and verify a decision procedure that
checks a grammar for this property.

We plan to add support for user-defined semantic actions
and predicates to CoStar, so that the tool can produce and
validate semantic values with a user-defined type. One diffi-
cult aspect of this task is that it complicates our notion of
ambiguity, because two distinct parse trees for an ambigu-
ous word might map to the same semantic value. Therefore,
we would have to update portions of the specification that
describe the parser’s ambiguity detection features.
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